15.2线段的垂直平分线

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§15.2线段的垂直平分线界首市政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等。ABC实际问题1ABL实际问题2在国道L的同侧,有两个工厂A、B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?105国道L1、能说出线段的垂直平分线的定理和逆定理,会区别运用这两个定理。2、体会学习数学的方法,观察,概括,验证,比较等在本课时中的应用。3、认识数学来源于生活,又服务于现实生活,体验数学的应用价值。教学目标1、以已知线段AB为底边作等腰三角形可以做多少个?2、如果不用尺规,用三角板,能画出上述要求的等腰三角形吗?3、如果只用直尺,能画出上述要求的等腰三角形吗?AB线段的垂直平分线PA=PBP1P1A=P1B……命题:线段垂直平分线上的点到这条线段两个端点的距离相等。PMNC动手操作:作线段AB的中垂线MN,垂足为C;在MN上任取一点P,连结PA、PB;量一量:PA、PB的长,你能发现什么?由此你能得到什么规律?命题:线段垂直平分线上的点到这条线段两个端点的距离相等。线段的垂直平分线ABPMNCPA=PB直线MN⊥AB,垂足为C,且AC=CB.已知:如图,点P在MN上.求证:证明:∵MN⊥AB∴∠PCA=∠PCB=90º在ΔPAC和ΔPBC中,AC=BC∠PCA=∠PCBPC=PC∴ΔPAC≌ΔPBC∴PA=PB性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。线段的垂直平分线ABPMNCPA=PB点P在线段AB的垂直平分线上线段垂直平分线上的点到这条线段两个端点的距离相等3.14线段的垂直平分线ABPC性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。PA=PB点P在线段AB的垂直平分线上?逆命题:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。二、逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。线段的垂直平分线一、性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。PA=PB点P在线段AB的垂直平分线上到一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段垂直平分线上的点到这条线段两个端点的距离相等你能根据上述定理和逆定理,说出线段的垂直平分线的集合定义吗?三、线段的垂直平分线的集合定义:线段的垂直平分线可以看作是到线段两个端点距离相等的所有点的集合线段的垂直平分线例1已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P.求证:PA=PB=PC;BACMNM’N’PPA=PB=PCPB=PC点P在线段BC的垂直平分线上PA=PB点P在线段AB的垂直平分线上分析:结论:三角形三边垂直平分线交于一点,这一点到三角形三个顶点的距离相等。你能依据例1得到什么结论?例1已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P.求证:PA=PB=PC;证明:∵点P在线段AB的垂直平分线MN上,∴PA=PB(?).同理PB=PC.∴PA=PB=PC.BACMNM’N’P界首市政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等。ABC实际问题1BAC线段的垂直平分线1、求作一点P,使它和△ABC的三个顶点距离相等.实际问题数学化pPA=PB=PC实际问题1105国道ABL实际问题2在国道L的同侧,有两个工厂A、B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?线段的垂直平分线2、如图,在直线L上求作一点P,使PA=PB.LAB实际问题数学化实际问题2pPA=PB数学问题源于生活实践,反过来数学又为生活实践服务今天学习了线段的中垂线的性质、逆定理及集合定义,你能由此联想到前面学过的什么知识与此类似吗?作业:课本P1312、3、4OAB..问题探讨在V型公路(∠AOB)内部,有两个村庄C、D。你能选择一个纺织厂的厂址P,使P到V型公路的距离相等,且使C、D两村的工人上下班的路程一样吗?CD

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功