简述高炉炼铁日常操作技术(二)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

简述高炉炼铁日常操作技术(二)高炉2009-09-1120:06:10阅读378评论0字号:大中小11、送风制度的调整高炉炼铁是以风为本,要尽量实现全风量操作,并且要稳定送风制度,以维持好合理炉型,煤气流分布合理,炉缸活跃。选择风量的原则:风量必须要与料柱透气性相适应,建立最低燃料比的综合冶炼强度在1.0~1.1t/m³?d的概念,是高炉炼铁节能降耗工作的重要指导思想。冶炼每吨生铁消耗风量值(不富氧)燃料比,Kg/t540530520510500消耗风量,m³/t≤1310≤1270≤1240≤1210≤1180消耗风量,m³/t≤1310≤1270≤1240≤1210≤1180以上为高炉炼铁工艺设计规范4.2.5。风机的选择为:送风量为炉容的二倍左右。目前中小高炉大多数是选择大风机。1)固定风量操作进行脱湿鼓风可使一年四季送风量均衡。稳定操作制度,三个班的要求要统一,实行固定风量操作要求各班装料批数±2批料。风量波动不大于正常风量的3%。2)调剂风量的原则和方法每次调剂风量要在总风量的3%左右,二次加风之间要时间大于20分钟,加风量每次不能超过原风量的10%。以透气性指数为依据进行调整风量。为节能,由鼓风机来加减风,风闸全关。一般炉热不减风。炉凉时要先提风温,提高鼓风温度,增加喷煤量,不能制止炉凉时可适度减风(5%~10%),使料速达到正常水平。低料线大于半小时要减风,不允许长期低料线作业。休风后复风一般用全风的70%左右(风压,压差不允许高于正常水平),待热风压力平稳或有下降趋势时才允许再加风,加风后的热风压力和压差不允许高于正常水平。煤气流失常时,应以下部调剂为主,上部调剂为辅。3)不同容积高炉风速和鼓风动能的选择炉容m³100300600100015002000250030004000炉缸直径2.94.76.07.28.69.811.011.813.5m鼓风动能KJ/S15~3025~4035~5040~6050~7060~8070~10090~110110~140风速m/s90~120100~150100~180100~200120~200150~220160~250200~250200~280冶炼强度升高,鼓风动能降低,原燃料质量好的高炉风速和鼓风动能较高,喷煤量提高,鼓风动能低一些,但也有相反情况,富氧后,风速和鼓风动能均要提高,冶炼铸造铁的风速和鼓风动能比炼钢铁低。风口数目多,鼓风动能低,但风速高。矮胖多风口高炉,风速和鼓风动能均要提高。随高炉炉容的扩大(生产中后期),风速和鼓风动能均要增加。一般情况下,风口面积不宜经常变动。4)冶炼强度的选择炼铁学理论:高炉利用系数=冶炼强度÷燃料比使用提高冶炼强度的办法来提高利用系数是不科学的。这是中小高炉使用大风机,进行高冶炼强度冶炼,来实现高产的普遍办法。这样做法是高能耗,高污染的作法。宝钢吨铁风耗为950m³/t左右,而中小高炉为1200~1500m³/t。风机产出1m³风要耗0.85kgce/t能耗。生产实践表明,高炉操作经济的冶炼强度在1.0~1.1t/m³?d。在1.1t/m³?d冶强以上,冶强每升高10%,焦比升高1.4%,炉渣脱硫能力降低。高炉增产的正确方法是:降低燃料比,提高富氧率和炉顶压力。用炉腹煤气量指数取代冶炼强度来衡量高炉强化程度是最科学的方法,其定义为:单位炉缸面积上产生的炉腹煤气量。操作较好的高炉炉腹煤气量指数在58~66,最高为70。5)富氧富氧鼓风可提高产量,炉腹煤气量减少,吨铁煤气量减少,有利于提高喷煤比(风口前理论燃烧温度提高)。所以,富氧要与提高喷煤比相结合。风中含氧21%增至25%,增产3.2%~3.5%;风中含氧25%升到30%,增产3%。富氧1%,可增加喷煤量15-20kg/t,煤气发热值提高3.4%,可增产4.76%,风口面积要缩小1.0%-1.4%。因为富氧后煤气体积会减小,要保持原来风速。高炉炉况不顺,要先停氧。富氧7%以上不经济。因氧是用电换来的。建议为高炉专门配备变压吸附制氧设备,不受炼钢富余氧量变化的制约,含氧量也不用那么纯,85%即可,成本也低(1M3氧气电耗变压吸附制氧设备为0.3度,而深冷制氧为0.5度),运行灵活(开停只十几分钟)。6)脱湿鼓风理论上风中每增加1%的湿度,需要有提高72℃风温来补偿,每1%的湿度相当于8g/m³鼓风。风中每增加1g水,需要9℃热风来补偿。实际高炉鼓风含1g/m³水后,会有H2的产生,有利于铁矿石还原,是个放热反应。实际鼓风增湿1g/m³,只要6℃风温来补偿。无喷煤的高炉,采用加湿鼓风可使用高风温炼铁,有利于增产降焦。7)高压操作炉顶煤气压力大于0.03MPa叫高压操作。由常压改为80KPa高压后,鼓风量可增加10%~15%,相当于提高2%风量,再提高压力后,所增加风量为1.7%~1.8%;可以推动煤气压差发电装备TRT运转。提高顶压10KPa,可增产10±2%,降焦比3%~5%,有利于冶炼低Si铁,提高TRT发电能力,降低炉尘量。高压操作不利于SiO2的还原,强化了渗碳过程,故有利于冶炼低硅铁;一定程度降低焦比。高压操作煤气体积减小,流速降低,压头损失减少,有利于煤气热值充分传递给炉料,促进高炉顺行和节能,允许加风量2.5%-3.0%12、装料制度的调整高炉煤气流合理分布取决于装料制度与送风制度的相互配合。装料制度优化可使炉内煤气分布合理,改善矿石与煤气接触条件,减少煤气对炉料下降的阻力,避免高炉憋风,悬料。提高煤气利用率和矿石的间接还原度,可降低焦比,促进高炉生产稳定顺行。1)装料制度包括:装料顺序,炉料批重,布料方式,料线等。2)双钟炉顶设备装料方式正同装OOCC↓正分装OO↓CC↓半倒装COOC↓倒分装CC↓OO↓倒同装CCOO↓大钟倾角一般为50~53°,大钟行程一般为400~600mm。加重边缘装料的影响:由重到轻,正同装→正分装→混同装→半倒装→倒分装→倒同装。3)无料钟炉顶设备一批料,流槽旋转8~12圈,矿和焦的α角差为2°~4°。α0=αc+(2°~4°)可实现单环、多环、扇形,螺旋布料,定点布料,中心加焦。大高炉可选择α角12个档位。无料钟布料易形成的料面:周边平台和中心漏斗,促进边缘和中心两股气流共同发展。4)布料效应使用不同炉料,加重边缘效应为天然矿石→大粒度球团矿→小粒度球团矿→烧结矿→焦炭→小粒度烧结矿石灰石要布到中心,防止边缘产生高粘度的炉渣,使炉墙结厚。5)矿批重的选择矿批重具有均整料面的功能,又有配合装料次序改变炉料纵深分布。每座高炉均有一个临界矿批重,当矿批重大于临界矿批重,再增大矿批重时,会有加重中心的作用。过大矿批重会加重边缘和中心的作用。不同容积的高炉建议矿批重如下炉容m³10025060010001500200030004000炉喉直径,m2.53.54.75.86.77.38.29.8矿批重,t4711.51724303756炉喉矿层厚,m0.510.460.410.400.430.450.440.46炉喉焦层厚,m0.650.590.440.430.460.480.470.49目前,原燃料质量的不断改善,有降低矿批量趋势。大高炉的焦批厚在0.65~0.75m,不宜小于0.5m。宝钢焦批在800mm。调负荷一般不动焦批,以保持焦窗透气性稳定。焦批的改变对布料具有重大影响,操作中最好不用。高炉操作不轻易加净焦,只有在出现对炉温有持久影响的因素存在才用(如高炉大凉、发生严重崩料和悬料,设备大故障等)。而且只有在净焦下达炉缸时才会起作用。加净焦的作用:有效提炉温,疏松料柱,改炉料透气性,改变煤气流分布。跟据情况采取改变焦碳负荷的方法比较稳妥,不会造成炉温波动。调焦炭负荷不可过猛,变铁种时,要分几批调剂,间隔最好1-2小时。高冶炼强度,矿批重要加大。喷煤比提高,要加大矿批重。加大矿批重的条件:边缘负荷重、矿石密度大改用密度小时(富矿改贫矿)、焦炭负荷减轻。减小矿批重的条件:边缘煤气流过分发展;在矿批重相同的条件,以烧结矿代替天然矿;加重焦炭负荷;炉龄后期等。改变装料顺序的条件:调整炉顶煤气流分布,处理炉墙结厚和结瘤,开停炉前后等。为解决钟阀式炉顶布料不均,使用布料器可消除炉料偏析。布料器类型:马基式旋转布料器—可进行0º、60º、120º、180º、240º、360º六点布料。仍有布料不均现象,易磨损。快速旋转布料器—转速为10~20转/分,布料均匀,消除堆角。空转螺旋布料器—与快速旋转布料器结构相同,旋转漏斗开口为单嘴,没有密封。布料器不转时要减轻焦炭负荷1%~5%。6)可调炉喉大型高炉有可调炉喉。宝钢1号高炉有24块可调炉喉板,有11个档位,可使料面差由0.75m至3.58m,对炉内料面影响较大。7)料线料线越高,则炉料堆尖离开炉墙远,故使边缘煤气流发展。料线应在炉料碰炉墙的撞点以上。每次检修均要校正料线0点。中小高炉炉料线在1.2~1.5m,大型高炉在1.5m~2.0m。装完料后的料线仍要有0.5m的余富量。两个料R下降相差要小于0.3~0.5m。料线低于正常规定的0.5m以上时,或时间超过1小时,称为低料线。低料线1小时,要加8%~12%的焦,料线深超过3m时,要加10%~15%的焦炭。高炉低料线时间长,就应休风,也不允许长期慢风作业。否则会造成炉缸堆积和炉墙结厚。8)判断装料制度是否合理的标准煤气利用率:CO2/(CO+CO2)值,好为0.5以上,较好为0.45左右,较差为0.4以下,差为0.3以下。煤气五点分析曲线:馒头型差,双峰型有两条通道,喇叭花型中心发展,平坦形(双燕飞)最好。炉顶温度,好的标准:中心500℃左右,四周150~200℃。四周各点温差不大于50℃。CO2含量表示能源利用情况:2000m³以上高炉应在20%~24%1000m³左右高炉为20%~22%1000m³以下高炉为18%~20%。13、热风制度的选择高炉炼铁热量来源:碳素燃烧(焦炭、煤粉)占78%,热风带入热量19%,炉料化学反应热3%。1)炉缸热量表示方式:物理热:铁水和熔渣的温度,一般为1350~1550℃,正常值为1450℃。化学热:生铁含Si量。炼钢铁控制在0.3%~0.70%.Si含量0.5%为宜。铸造铁为在指定范围,两炉之间含Si波动±0.2%风口区理论燃烧温度:2150±50℃炉渣碱度也可以表述炉缸工作热状态。炉渣溶化温度是炉缸温度调整手段之一。2)影响热制度的因素影响炉缸温度方面因素:风温、富氧、喷煤、鼓风温度和湿度、焦炭负荷,炉料下降速度,矿石含铁品位等。影响热量消耗方面因素:原燃料数量和质量,炉内间接还原程度,冷却水冷却强度(包括漏水),煤气热能利用,高炉操作水平(料速,崩料,悬料等)。影响炉内热交换的因素:煤气流分布和流速,布料方式,炉料传热速度和热流比,炉料粒度、密度和气孔形式。炼铁设备和企业管理因素:炼铁设备运行状态,冷却设备是否漏水,称量的准确度,高炉操作水平(四个制度稳定)。14渣制度的选择高炉造渣制度要满足高炉冶炼的要求:渣铁易分离、脱硫能力高,炉渣流动性好(粘度低),稳定性好。1)对造渣制度的要求在优化配矿时,要选择初成渣生成晚,软熔区间窄,对炉料透气性有利,初渣中FeO含量少。希望炉渣熔化温度在1300~1400℃,粘度小于10泊左右,可操作的温度波动范围大于150℃。要求炉渣能自由流动的温度为1400~1500℃,粘度小于2.5泊,粘度转折点在大于1300~1250℃。炉渣在正常温度下要有良好的流动性和稳定性。希望炉渣从流动到不流动的温度范围比较宽、称之为长渣。温度波动±25℃,二元碱度波动±0.5时,有稳定的物理性能。有足够的脱硫能力,在炉温和碱度适宜条件下,硫负荷5Kg/t,硫的分配系数为25~30,硫负荷5Kg/t时,分配系数为30~50。对高炉衬砖侵蚀能力较弱在炉温和碱度正常条件下有较好的熔化性、流动性、稳定性,脱硫性,能冶炼出优质生铁。3)炉渣性能对高炉冶炼的影响高炉内成渣区是炉料透气性最差的地方,占高炉煤气压头损失的70%~80%。所以要求炉渣熔化温度高,熔化区间窄,流

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功