INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENG

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

INTERNATIONALJOURNALFORNUMERICALMETHODSINENGINEERINGInt.J.Numer.Meth.Engng2002;00:1{27Preparedusingnmeauth.cls[Version:2000/01/19v2.0]Iterativesolutionoflargelinearsystemswithnon{smoothsubmatricesusingpartialwavelettransformsandsplit{matrixmatrix{vectormultiplicationPatriciaGonzalezy,JoseC.CabaleiroandTomasF.PenaDept.ElectronicsandComputerScience.Univ.SantiagodeCompostela.15782SantiagodeCompostela,Spain,fcaba,tomasg@dec.usc.esyDept.ElectronicsandSystems.Univ.ACoru~na.15071ACoru~na,Spain,pglez@udc.esSUMMARYTheiterativesolutionoflargelinearsystemswithhighlyirregularmatricescannotbeacceleratedbywavelettransformationandsubsequentsparsi cationifthetransformedmatrixisstillhighlyirregular.Inthispaperweshowthatiftheirregularityoftheoriginalmatrixislimitedtoarelativelysmallknownsetofrowsorcolumns(asisthecaseinsigni cantapplications),thenaccelerationcanbeachievedbyamixedapproachinwhichonlythe\smoothsubmatrixistransformedanditerativesolutionisimplementedusinganovel\split{matrixformofmatrix-vectormultiplication.Copyrightc2002JohnWiley&Sons,Ltd.Correspondenceto:TomasF.Pena,Dept.ElectronicaeComputacion,Univ.SantiagodeCompostela,15782SantiagodeCompostela,Spain,tomas@dec.usc.esContract/grantsponsor:MinisteriodeCienciayTecnologa;contract/grantnumber:TIC2001-3694-C02-01Copyrightc2002JohnWiley&Sons,Ltd.2P.GONZALEZ,J.C.CABALEIROANDT.F.PENAkeywords:denselinearsystems,boundaryelementmethod,wavelettransforms,liftingscheme,iterativesolvers,GMRES.1.INTRODUCTIONAsiswellknown,ageneralsystemAx=b(1)ofnlinearequationsinnunknownscanbesolvedinO(n3)operationsbydirectmethodsbasedonLUfactorization.Thisissatisfactoryenoughifnissmall,especiallyif,inthecontextofabroaderproblem,assemblyofthesystemtobesolvedtakessigni cantlylongerthansolutionofthesystem,butiterativemethodsemployingO(n2)operationsperiterationbecomemoreecientasproblemsizeincreases;currently,forexample,itiscommontoemployaKrylovsubspacemethod.TheconvergenceofsuchprocessescanoftenbeenhancedbysubjectingthematrixAtoappropriatepreconditioning.Amoreradicalapproachtosolutionaccelerationistore{expresstheproblemofequation(1)relativetoabasissuchthatthetransformedmatrixWA=WAW1,whereWisthetransformationmatrix,hasrelativelyfewelementsthatdi ersigni cantlyfromzero.Inthissituation,settingthenear{zeroelementsofWAtozero(\thresholding)oftenallowsasolutionoftheproblemtobeobtained,withoutsigni cantlossofaccuracy,byapplyingfastsparse{systemtechniquestotheresultingsystem~AWx=Wb(2)where~AistheresultofsparsifyingWAbythresholding,Wx=WxandWb=Wb.ThespeedupCopyrightc2002JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng2002;00:1{27Preparedusingnmeauth.clsIT.SOL.OFLARGELINEARSYSTEMSWITHNON{SMOOTHSUBMATRICESUSING...3achievedbybeingabletousesparse{systemtechniques,whichtypicallyinvolveO(nlogn)operationsperiteration,canfaroutweighthecostofthetransformationA!WA,whichlikethecostperiterationwithouttransformationandthresholdingisO(n2)[2,3].Quantitaveanalysisin[11,8,26,10]showthatwithappropiatewavelets,adensesystemofequationscanbecompressedtoasparseone,whoseresolutionsavesoperationswhereastheorderoftheconvergenceismaintained.Onekindoftasktowhichtheabove\transformationplusthresholdingapproachhasbeensuccessfullyappliedisthesolutionoflinearsystemsarisingfromapplicationoftheboundaryelementmethod(BEM)toboundaryvalueproblems[4,9,18].Recently,in[6]anewapproachtoapplyingwaveletsforthesolutionofsystemsofequationsgeneratedbyBEMproblemswasrecentlyproposed.SincethematrixAinBEMproblemsismadeupfromtermsforseparateintegralsHandG,applyingthewavelettransformtotheHandGmatricesbeforeassemblyintoAgivesbetterperformance.Inthispaperwefocusonageneralapproachappliedtoanymatrix{vectormultiplicationinvolvingadensematrixA,butthisapproachcanbealsoappliedtopreviousmatricesHandGonthoseproblems.Goodresultshavebeenachievedbytransformingtowaveletbases[7],whichallowextremelyecientencodingofmanypatternsofvariationbecausetheirbasisvectorsarerelativelylocalizedinboththespaceandfrequencydomains.However,whentheproblemstackledinvolveveryirregularboundariesand/ormixedboundaryconditions,thecorrespondingirregularityofthematricesAwhichencodethemmaypersistinthetransformedmatrixWA,makingthresholdingimpossible.Forexample,Figure1illustratestheuntransformedmatrixarisingfromapplicationofthedualBEMtoahollowcylinderwithacrackatitsinsidesurface[17];thesubarraycorrespondingtothecrackisclearlydistinguishedbyitsmanylargeelementsCopyrightc2002JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng2002;00:1{27Preparedusingnmeauth.cls4P.GONZALEZ,J.C.CABALEIROANDT.F.PENA020406080100050100−1−0.500.511.5x104(a)01020300102030−0.2−0.100.10.20.3(b)Figure1.a)MatrixarisingfromapplicationofthedualBEMtoahollowcylinderwithacrackatitsinsidesurface.b)Magni edviewofpartofthesmoothregion.andgreatirregularity(Figure1(a)).Thresholdingcanachieveonlylimitedsparsi cationofthecorrespondingtransformedmatrixwithouttotallyannullingthesubarraycorrespondingtotheregularboundaryofthephysicalsystem(Figure1(b)showsadetailofthisareaoftheoriginalmatrix;notethechangeinverticalscale);andtheeliminationofinformationcaused

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功