Local features and kernels for classification of t

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Localfeaturesandkernelsforclassi cationoftextureandobjectcategories:AcomprehensivestudyJ.Zhang1,M.Marszalek1,S.Lazebnik2andC.Schmid1,1INRIA,GRAVIR-CNRS,655,av.del'Europe,38330Montbonnot,France2BeckmanInstitute,UniversityofIllinois,405N.MathewsAve.,Urbana,IL61801,USAAbstractRecently,methodsbasedonlocalimagefeatureshaveshownpromisefortextureandobjectrecog-nitiontasks.Thispaperpresentsalarge-scaleevaluationofanapproachthatrepresentsimagesasdistributions(signaturesorhistograms)offeaturesextractedfromasparsesetofkeypointlocationsandlearnsaSupportVectorMachineclassi erwithkernelsbasedontwoe ectivemeasuresforcomparingdistributions,theEarthMover'sDistanceandthe2distance.We rstevaluatetheper-formanceofourapproachwithdi erentkeypointdetectorsanddescriptors,aswellasdi erentkernelsandclassi ers.Wethenconductacomparativeevaluationwithseveralstate-of-the-artrecognitionmethodsonfourtextureand veobjectdatabases.Onmostofthesedatabases,ourimplementationexceedsthebestreportedresultsandachievescomparableperformanceontherest.Finally,weinves-tigatetheinuenceofbackgroundcorrelationsonrecognitionperformanceviaextensivetestsonthePASCALdatabase,forwhichground-truthobjectlocalizationinformationisavailable.Ourexperi-mentsdemonstratethatimagerepresentationsbasedondistributionsoflocalfeaturesaresurprisinglye ectiveforclassi cationoftextureandobjectimagesunderchallengingreal-worldconditions,in-cludingsigni cantintra-classvariationsandsubstantialbackgroundclutter.Keywords:imageclassi cation,texturerecognition,objectrecognition,scale-andane-invariantkeypoints,supportvectormachines,kernelmethods.1IntroductionTherecognitionoftextureandobjectcategoriesisoneofthemostchallengingproblemsincomputervision,especiallyinthepresenceofintra-classvariation,clutter,occlusion,andposechanges.Histori-cally,textureandobjectrecognitionhavebeentreatedastwoseparateproblemsintheliterature.Itiscustomarytode netextureasavisualpatterncharacterizedbytherepetitionofafewbasicprimitives,ortextons[27].Accordingly,manye ectivetexturerecognitionapproaches[8,31,33,57,58]obtaintex-tonsbyclusteringlocalimagefeatures(i.e.,appearancedescriptorsofrelativelysmallneighborhoods),andrepresenttextureimagesashistogramsordistributionsoftheresultingtextons.Notethattheseapproachesareorderless,i.e.,theyretainonlythefrequenciesoftheindividualfeatures,anddiscardallinformationabouttheirspatiallayout.Ontheotherhand,theproblemofobjectrecognitionhastypi-callybeenapproachedusingparts-and-shapemodelsthatrepresentnotonlytheappearanceofindividualobjectcomponents,butalsothespatialrelationsbetweenthem[1,17,18,19,60].However,recentliter-aturealsocontainsseveralproposalstorepresentthe\visualtextureofimagescontainingobjectsusingorderlessbag-of-featuresmodels.Suchmodelshaveproventobee ectiveforobjectclassi cation[7,61],unsuperviseddiscoveryofcategories[16,51,55],andvideoretrieval[56].Thesuccessoforderlessmodelsfortheseobjectrecognitiontasksmaybeexplainedwiththehelpofananalogytobag-of-wordsmodelsfortextdocumentclassi cation[40,46].Whereasfortexturerecognition,localfeaturesplaytheroleoftextons,orfrequentlyrepeatedelements,forobjectrecognitiontasks,localfeaturesplaytheroleof\visualwordspredictiveofacertain\topic,orobjectclass.Forexample,aneyeishighlypredictiveofafacebeingpresentintheimage.Ifourvisualdictionarycontainswordsthataresucientlydiscrim-inativewhentakenindividually,thenitispossibletoachieveahighdegreeofsuccessforwhole-imageclassi cation,i.e.,identi cationoftheobjectclasscontainedintheimagewithoutattemptingtosegment1orlocalizethatobject,simplybylookingwhichvisualwordsarepresent,regardlessoftheirspatiallayout.Overall,thereisanemergingconsensusinrecentliteraturethatorderlessmethodsaree ectiveforbothtextureandobjectdescription,anditcreatestheneedforalarge-scalequantitativeevaluationofasingleapproachtestedonmultipletextureandobjectdatabases.Todate,state-of-the-artresultsinbothtexture[31]andobjectrecognition[18,23,48,61]havebeenobtainedwithlocalfeaturescomputedatasparsesetofscale-orane-invariantkeypointlocationsfoundbyspecializedinterestoperators[34,43].Atthesametime,SupportVectorMachine(SVM)classi ers[54]haveshowntheirpromiseforvisualclassi cationtasks(see[50]foranearlyexample),andthedevelopmentofkernelssuitableforusewithlocalfeatureshasemergedasafruitfullineofre-search[4,13,23,37,47,59].Mostexistingevaluationsofmethodscombiningkernelsandlocalfeatureshavebeensmall-scaleandlimitedtooneortwodatasets.Moreover,thebackgroundsinmanyofthesedatasets,suchasCOIL-100[44]orETH-80[32]areeither(mostly)uniformorhighlycorrelatedwiththeforegroundobjects,sothattheperformanceofthemethodsonchallengingreal-worldimagerycannotbeassessedaccurately.Thismotivatesustobuildane ectiveimageclassi cationapproachcombiningabag-of-keypointsrepresentationwithakernel-basedlearningmethodandtotestthelimitsofitsperfor-manceonthemostchallengingdatabasesavailabletoday.Ourstudyconsistsofthreecomponents:Evaluationofimplementationchoices.Inthispaper,weplaceaparticularemphasisonproducingacarefullyengineeredrecognitionsystem,whereeverycomponen

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功