目录上页下页返回结束二、最大值与最小值问题一、函数的极值及其求法第五节函数的极值与最大值最小值第三章目录上页下页返回结束定义:在其中当时,(1)则称为的极大值点,称为函数的极大值;(2)则称为的极小值点,称为函数的极小值.极大值点与极小值点统称为极值点.一、函数的极值及其求法目录上页下页返回结束注意:3x1x4x2x5xOxaby41,xx为极大值点52,xx为极小值点3x不是极值点2)对常见函数,极值可能出现在导数为0或不存在的点.1)函数的极值是函数的局部性质.31292)(23xxxxf例如,为极大值点,是极大值是极小值为极小值点,函数12xOy12目录上页下页返回结束定理1(极值第一判别法),)(0的某邻域内连续在设函数xxf且在空心邻域内有导数,,0时由小到大通过当xx(1))(xf“左正右负”,;)(0取极小值在则xxf(2))(xf“左负右正”,.)(0取极大值在则xxf(自证)点击图中任意处动画播放\暂停目录上页下页返回结束例1.求函数的极值.解:1)求导数32)(xxf3132)1(xx35235xx2)求极值可疑点令,0)(xf得;521x令,)(xf得02x3)列表判别x)(xf)(xf0520033.0)0,(),0(52),(52是极大值点,其极大值为是极小值点,其极小值为目录上页下页返回结束定理2(极值第二判别法)二阶导数,且则在点取极大值;则在点取极小值.证:(1))(0xf00)()(lim0xxxfxfxx0)(lim0xxxfxx,0)(0知由xf存在,0,00时当xx时,故当00xxx;0)(xf时,当00xxx,0)(xf0x0x0x由第一判别法知.)(0取极大值在xxf(2)类似可证.目录上页下页返回结束例2.求函数的极值.解:1)求导数,)1(6)(22xxxf)15)(1(6)(22xxxf2)求驻点令,0)(xf得驻点1,0,1321xxx3)判别因,06)0(f故为极小值;又,0)1()1(ff故需用第一判别法判别.1xy1O目录上页下页返回结束定理3(判别法的推广),0)(0)(xfn则:数,且1)当为偶数时,n是极小点;是极大点.2)当为奇数时,n为极值点,且不是极值点.))(()()(000xxxfxfxfnnxxnxf)(!)(00)())((0nxxo当充分接近时,上式左端正负号由右端第一项确定,故结论正确.证:利用在点的泰勒公式,可得目录上页下页返回结束例如,例2中,)35(24)(2xxxf0)1(f所以不是极值点.极值的判别法(定理1~定理3)都是充分的.说明:当这些充分条件不满足时,不等于极值不存在.例如:2)0(f为极大值,但不满足定理1~定理3的条件.1xy1O目录上页下页返回结束二、最大值与最小值问题则其最值只能在极值点或端点处达到.求函数最值的方法:(1)求在内的极值可疑点(2)最大值maxM,)(af)(bf最小值目录上页下页返回结束特别:•当在内只有一个极值可疑点时,•当在上单调时,最值必在端点处达到.若在此点取极大值,则也是最大值.(小)•对应用问题,有时可根据实际意义判别求出的可疑点是否为最大值点或最小值点.(小)目录上页下页返回结束)1292(2xx1224)9(209681012922xx)(xxf041x250x041x250x例3.求函数在闭区间上的最大值和最小值.解:显然且,)1292(23xxx,129223xxx)(xf121862xx121862xx2,1,0321xxx故函数在0x取最小值0;在1x及25取最大值5.,)2)(1(6xx,)2)(1(6xx412512xyO目录上页下页返回结束因此也可通过例3.求函数说明:)()(2xfx)(x求最值点.)(xf与最值点相同,由于)(x令(自己练习)在闭区间上的最大值和最小值.目录上页下页返回结束(k为某常数)例4.铁路上AB段的距离为100km,工厂C距A处20AC⊥AB,要在AB线上选定一点D向工厂修一条已知铁路与公路每公里货运为使货物从B运到工20AB100C解:设,(km)xADx则,2022xCD,)34005(2xxky23)400(40052xky令得又所以为唯一的15x极小值点,故AD=15km时运费最省.总运费厂C的运费最省,从而为最小值点,问D点应如何取?Dkm,公路,价之比为3:5,目录上页下页返回结束例5.把一根直径为d的圆木锯成矩形梁,问矩形截面的高h和b应如何选择才能使梁的抗弯截面模量最大?解:由力学分析知矩形梁的抗弯截面模量为hbd,)(2261bdb),0(db令)3(2261bdw得db31从而有1:2:3::bhd22bdhd32即由实际意义可知,所求最值存在,驻点只一个,故所求结果就是最好的选择.目录上页下页返回结束F用开始移动,例6.设有质量为5kg的物体置于水平面上,受力F作解:克服摩擦的水平分力正压力cosF)sin5(Fg即,sincos5gF],0[2π令sincos)(则问题转化为求)(的最大值问题.设摩擦系数问力F与水平面夹角为多少时才可使力F的大小最小?P目录上页下页返回结束sincos)(令解得,0)(而因而F取最小值.解:即令则问题转化为求的最大值问题.,sincos5gF],0[2πsincos)()(FP目录上页下页返回结束清楚(视角最大)?观察者的眼睛1.8m,例7.一张1.4m高的图片挂在墙上,它的底边高于x解:设观察者与墙的距离为xm,则x8.14.1arctan,8.1arctanx),0(x222.32.3x228.18.1x)8.1)(2.3()76.5(4.122222xxx令,0得驻点),0(4.2x根据问题的实际意义,观察者最佳站位存在,唯一,驻点又因此观察者站在距离墙2.4m处看图最清楚.问观察者在距墙多远处看图才最4.18.1目录上页下页返回结束存在一个取得最大利润的生产水平?如果存在,找出它来.售出该产品x千件的收入是例8.设某工厂生产某产品x千件的成本是解:售出x千件产品的利润为)()()(xCxRxp6123)(2xxxp得令,0)(xp586.0221x问是否3)(xxC,1562xx,9)(xxRxxx6623,126)(xxp又,0)(1xp0)(2xp故在x2=3.414千件处达到最大利润,而在x1=0.586千件处发生局部最大亏损.y)(xp22Ox22)24(32xx414.3222x目录上页下页返回结束说明:在经济学中)(xC称为边际成本)(xR称为边际收入)(xp称为边际利润由此例分析过程可见,在给出最大利润的生产水平上,0)(xp即边际收入=边际成本(见右图)22yOx22xxxxC156)(23成本函数xxR9)(收入函数)()(xCxR即收益最大亏损最大目录上页下页返回结束内容小结1.连续函数的极值(1)极值可疑点:使导数为0或不存在的点(2)第一充分条件过由正变负为极大值过由负变正为极小值(3)第二充分条件为极大值为极小值(4)判别法的推广定理3定理3目录上页下页返回结束最值点应在极值点和边界点上找;应用题可根据问题的实际意义判别.思考与练习2.连续函数的最值1.设,1)()()(lim2axafxfax则在点a处().)()(xfA的导数存在,;且0)(af)()(xfB取得极大值;)()(xfC取得极小值;)()(xfD的导数不存在.B提示:利用极限的保号性目录上页下页返回结束2.设)(xf在0x的某邻域内连续,且,0)0(f,2cos1)(lim0xxfx则在点0x处).()(xf(A)不可导;(B)可导,且;0)0(f(C)取得极大值;(D)取得极小值.D提示:利用极限的保号性.目录上页下页返回结束3.设)(xfy是方程042yyy的一个解,若,0)(0xf且,0)(0xf则)(xf在)(0x(A)取得极大值;(B)取得极小值;(C)在某邻域内单调增加;(D)在某邻域内单调减少.提示:0)(4)(00xfxfA目录上页下页返回结束作业P1621(5),(9);2;3;5;10;14;15第六节目录上页下页返回结束试问为何值时,axxaxf3sin31sin)(π32x在时取得极值,还是极小.解:)(xf由题意应有0π)(32f2a又)(xf时取得极大值:在2)(axf3π)(32f备用题1.π)(3cosπ)cos(3232a,3sin3sin2xx求出该极值,并指出它是极大即0121a目录上页下页返回结束上的在]1,0[)(xf试求,设Nnxxnxfn,)1()().(limnMn解:)(xf,0)(xf令])1(1[)1(1xnxnn2.nxn)1(1)1(nxnxn,)(由增变减通过此点时易判别xfx及最大值)(nM故所求最大值为1)1(nnn)11()(nfnM)(limnMn1e1)111(limnnn11nx第六节