1第5章回溯法2学习要点理解回溯法的深度优先搜索策略。掌握用回溯法解题的算法框架(1)递归回溯(2)迭代回溯(3)子集树算法框架(4)排列树算法框架3通过应用范例学习回溯法的设计策略。(1)装载问题;(2)批处理作业调度;(3)符号三角形问题(4)n后问题;(5)0-1背包问题;(6)最大团问题;(7)图的m着色问题(8)旅行售货员问题(9)圆排列问题(10)电路板排列问题(11)连续邮资问题4有许多问题,当需要找出它的解集或者要求回答什么解是满足某些约束条件的最佳解时,往往要使用回溯法。回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法适用于解一些组合数相当大的问题。回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。回溯法5问题的解空间•问题的解向量:回溯法希望一个问题的解能够表示成一个n元式(x1,x2,…,xn)的形式。•显约束:对分量xi的取值限定。•隐约束:为满足问题的解而对不同分量之间施加的约束。•解空间:对于问题的一个实例,解向量满足显式约束条件的所有多元组,构成了该实例的一个解空间。注意:同一个问题可以有多种表示,有些表示方法更简单,所需表示的状态空间更小(存储量少,搜索方法简单)。n=3时的0-1背包问题用完全二叉树表示的解空间6生成问题状态的基本方法扩展结点:一个正在产生儿子的结点称为扩展结点活结点:一个自身已生成但其儿子还没有全部生成的节点称做活结点死结点:一个所有儿子已经产生的结点称做死结点深度优先的问题状态生成法:如果对一个扩展结点R,一旦产生了它的一个儿子C,就把C当做新的扩展结点。在完成对子树C(以C为根的子树)的穷尽搜索之后,将R重新变成扩展结点,继续生成R的下一个儿子(如果存在)宽度优先的问题状态生成法:在一个扩展结点变成死结点之前,它一直是扩展结点回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(boundingfunction)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。具有限界函数的深度优先生成法称为回溯法7回溯法的基本思想(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。常用剪枝函数:用约束函数在扩展结点处剪去不满足约束的子树;用限界函数剪去得不到最优解的子树。用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。在任何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为O(h(n))。而显式地存储整个解空间则需要O(2h(n))或O(h(n)!)内存空间。8递归回溯回溯法对解空间作深度优先搜索,因此,在一般情况下用递归方法实现回溯法。voidbacktrack(intt){if(tn)output(x);elsefor(inti=f(n,t);i=g(n,t);i++){x[t]=h(i);if(constraint(t)&&bound(t))backtrack(t+1);}}9迭代回溯采用树的非递归深度优先遍历算法,可将回溯法表示为一个非递归迭代过程。voiditerativeBacktrack(){intt=1;while(t0){if(f(n,t)=g(n,t))for(inti=f(n,t);i=g(n,t);i++){x[t]=h(i);if(constraint(t)&&bound(t)){if(solution(t))output(x);elset++;}}elset--;}}10子集树与排列树遍历子集树需O(2n)计算时间遍历排列树需要O(n!)计算时间voidbacktrack(intt){if(tn)output(x);elsefor(inti=0;i=1;i++){x[t]=i;if(legal(t))backtrack(t+1);}}voidbacktrack(intt){if(tn)output(x);elsefor(inti=t;i=n;i++){swap(x[t],x[i]);if(legal(t))backtrack(t+1);swap(x[t],x[i]);}}11装载问题有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i的重量为wi,且211ccwnii装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。如果有,找出一种装载方案。容易证明,如果一个给定装载问题有解,则采用下面的策略可得到最优装载方案。(1)首先将第一艘轮船尽可能装满;(2)将剩余的集装箱装上第二艘轮船。将第一艘轮船尽可能装满等价于选取全体集装箱的一个子集,使该子集中集装箱重量之和最接近。由此可知,装载问题等价于以下特殊的0-1背包问题。nixcxwxwiniiiniii1},1,0{s.t.max111用回溯法设计解装载问题的O(2n)计算时间算法。在某些情况下该算法优于动态规划算法。12装载问题•解空间:子集树•可行性约束函数(选择当前元素):•上界函数(不选择当前元素):当前载重量cw+剩余集装箱的重量r当前最优载重量bestw11cxwniiivoidbacktrack(inti){//搜索第i层结点if(in)//到达叶结点更新最优解bestx,bestw;return;r-=w[i];if(cw+w[i]=c){//搜索左子树x[i]=1;cw+=w[i];backtrack(i+1);cw-=w[i];}if(cw+rbestw){x[i]=0;//搜索右子树backtrack(i+1);}r+=w[i];}13批处理作业调度给定n个作业的集合{J1,J2,…,Jn}。每个作业必须先由机器1处理,然后由机器2处理。作业Ji需要机器j的处理时间为tji。对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。jittji机器1机器2作业121作业231作业323这3个作业的6种可能的调度方案是1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1;它们所相应的完成时间和分别是19,18,20,21,19,19。易见,最佳调度方案是1,3,2,其完成时间和为18。14批处理作业调度•解空间:排列树voidFlowshop::Backtrack(inti){if(in){for(intj=1;j=n;j++)bestx[j]=x[j];bestf=f;}elsefor(intj=i;j=n;j++){f1+=M[x[j]][1];f2[i]=((f2[i-1]f1)?f2[i-1]:f1)+M[x[j]][2];f+=f2[i];if(fbestf){Swap(x[i],x[j]);Backtrack(i+1);Swap(x[i],x[j]);}f1-=M[x[j]][1];f-=f2[i];}}classFlowshop{friendFlow(int**,int,int[]);private:voidBacktrack(inti);int**M,//各作业所需的处理时间*x,//当前作业调度*bestx,//当前最优作业调度*f2,//机器2完成处理时间f1,//机器1完成处理时间f,//完成时间和bestf,//当前最优值n;//作业数};15符号三角形问题++-+-+++----+-+++--++--+---+下图是由14个“+”和14个“-”组成的符号三角形。2个同号下面都是“+”,2个异号下面都是“-”。在一般情况下,符号三角形的第一行有n个符号。符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。16符号三角形问题•解向量:用n元组x[1:n]表示符号三角形的第一行。•可行性约束函数:当前符号三角形所包含的“+”个数与“-”个数均不超过n*(n+1)/4•无解的判断:n*(n+1)/2为奇数voidTriangle::Backtrack(intt){if((counthalf)||(t*(t-1)/2-counthalf))return;if(tn)sum++;elsefor(inti=0;i2;i++){p[1][t]=i;count+=i;for(intj=2;j=t;j++){p[j][t-j+1]=p[j-1][t-j+1]^p[j-1][t-j+2];count+=p[j][t-j+1];}Backtrack(t+1);for(intj=2;j=t;j++)count-=p[j][t-j+1];count-=i;}}++-+-+++----+-+++--++--+---+复杂度分析计算可行性约束需要O(n)时间,在最坏情况下有O(2n)个结点需要计算可行性约束,故解符号三角形问题的回溯算法所需的计算时间为O(n2n)。17n后问题在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。1234567812345678QQQQQQQQ18•解向量:(x1,x2,…,xn)•显约束:xi=1,2,…,n•隐约束:1)不同列:xixj2)不处于同一正、反对角线:|i-j||xi-xj|n后问题boolQueen::Place(intk){for(intj=1;jk;j++)if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))returnfalse;returntrue;}voidQueen::Backtrack(intt){if(tn)sum++;elsefor(inti=1;i=n;i++){x[t]=i;if(Place(t))Backtrack(t+1);}}190-1背包问题•解空间:子集树•可行性约束函数:•上界函数:11cxwniiitemplateclassTypew,classTypepTypepKnapTypew,Typep::Bound(inti){//计算上界Typewcleft=c-cw;//剩余容量Typepb=cp;//以物品单位重量价值递减序装入物品while(i=n&&w[i]=cleft){cleft-=w[i];b+=p[i];i++;}//装满背包if(i=n)b+=p[i]/w[i]*cleft;returnb;}20最大团问题给定无向图G=(V,E)。如果UV,且对任意u,vU有(u,v)E,则称U是G的完全子图。G的完全子图U是G的团当且仅当U不包含在G的更大的完全子图中。G的最大团是指G中所含顶点数最多的团。如果UV且对任意u,vU有(u,v)E,则称U是G的空子图。G的空子图U是G的独立集当且仅当U不包含在G的更大的空子图中。G的最大独立集是G中所含顶点数最多的独立集。对于任一无向图G=(V,E)其补图G=(V1,E1)定义为:V1=V,且(u,v)E1当且仅当(u,v)E。U是G的最大团当且仅当U是G的最大独立集。124531245321最大团问题•解空间:子集树•可行性约束函数:顶点i到已选入的顶点集中每一个顶点都有边相连。•上界函数:有足够多的可选择顶点使得算法有可能在右子树中找到更大的团。voidClique::Backtr