第二章电气控制线路的基本控制规律2.1绘制电气控制线路的若干规则2.2电气控制的基本控制环节2.3三相交流电动机的启动控制2.4三相异步电动机制动控制2.5电动机的可逆运行2.6三相异步电动机调速控制2.7电气控制线路中的保护主令电器2.1绘制电气控制线路的若干规则电气控制线路是用导线将电机、继电器、接触器等电气元件按一定的要求和方法连接起来,并能实现某种控制功能的线路。电气控制线路图是将各电气元件的连接用图来表达,各种电气元件用不同的图形符号表示,并用不同的文字符号来说明其所代表电气元件的名称、用途、主要特征及编号等。绘制电气控制线路图必须清楚地表达生产设备电气控制系统的结构、原理等设计意图,并且以便于进行电气元件的安装、调整、使用和维修为原则。因此,电气控制线路应根据简明易懂的原则,采用统一规定的图形符号、文字符号和标准画法来进行绘制。一、电气控制线路图和常用符号电气控制线路的表示方法有两种:安装图和原理图。(一)常用电气图形符号和文字符号在绘制电气线路图时,电气元件的图形符号和文字符号必须符合国家标准的规定。表2-1为电气图形符号表,所用图形符号符合GB4728《电气图用图形符号》有关规定。表2-2为电气设备常用文字符号和中英文名称表,所用文字符号符合GB7159-87《电气技术中的文字符号制订通则》的规定。(二)电气原理图电气原理图一般分为主电路和辅助电路两个部分。主电路是电气控制线路中强电流通过的部分,是由电机以及与它相连接的电气元件如组合开关、接触器的主触点、热继电器的热元件、熔断器等组成的线路。辅助电路中通过的电流较小,包括控制电路、照明电路、信号电路及保护电路。其中,控制电路是由按钮、继电器和接触器的吸引线圈和辅助触点等组成。一般来说,信号电路是附加的,如果将它从辅助电路中分开,并不影响辅助电路工作的完整性。电气原理图能够清楚地表明电路的功能,对于分析电路的工作原理十分方便。1.绘制电气原理图的原则根据简单清晰的原则,原理图采用电气元件展开的形式绘制。它包括所有电气元件的导电部件和接线端点,但并不按照电气元件的实际位置来绘制,也不反映电气元件的尺寸大小。绘制电气原理图应遵循以下原则:(1)所有电机、电器等元件都应采用国家统一规定的图形符号和文字符号来表示。(2)主电路用粗实线绘制在图的左侧或上方,辅助电路用细实线绘制在图的右侧或下方。(3)无论是主电路还是辅助电路或其元件,均应按功能布置,各元件尽可能按动作顺序从上到下、从左到右排列。(4)在原理图中,同一电路的不同部分(如线圈、触点)应根据便于阅读的原则安排在图中,为了表示是同一元件,要在电器的不同部分使用同一文字符号来标明。对于同类电器,必须在名称后或下标加上数字序号以区别,如KM1、KM2等。(5)所有电器的可动部分均以自然状态画出,所谓自然状态是指各种电器在没有通电和没有外力作用时的状态。对于接触器、电磁式继电器等是指其线圈未加电压,触点未动作;控制器按手柄处于零位时的状态画;按钮、行程开关触点按不受外力作用时的状态画。(6)原理图上应尽可能减少线条和避免线条交叉。各导线之间有电的联系时,在导线的交点处画一个实心圆点。根据图面布置的需要,可以将图形符号旋转90o、180o或45o绘制。一般来说,原理图的绘制要求是层次分明,各电气元件以及它们的触点安排要合理,并保证电气控制线路运行可靠,节省连接导线,以及施工、维修方便。2.图面区域的划分为了便于检索电气线路,方便阅读电气原理图,应将图面划分为若干区域,图区的编号一般写在图的下部。图的上方设有用途栏,用文字注明该栏对应电路或元件的功能,以利于理解原理图各部分的功能及全电路的工作原理。例如,图2-1为CM6132普通车床电气原理图,在图2-1中图面划分为18个图区。图2-1CM6132普通车床电气原理图(三)电气安装图电气安装图是用来表示电气控制系统中各电气元件的实际安装位置和接线情况,它有电器位置图和互连图两部分。1、电器位置图电器位置图详细绘制出电气设备零件的安装位置。图中各电气元件的代号应与有关电路图对应的元器件代号相同,在图中往往留有10%以上的备用面积及导线管(槽)的位置,以供改进设计时用。2、电气互连图电气互连图是用来表明电气设备各单元之间的连接关系。它清楚地表示了电气设备外部元件的相对位置及它们之间的电气连接,是实际安装接线的依据,在具体施工和检修中能够起到电气原理图所起不到的作用,因此在生产现场中得到了广泛应用。二、阅读和分析电气控制路线图的方法阅读电气线路图的方法主要有两种:查线读图法和逻辑代数法。1.查线读图法查线读图法又称直接读图法或跟踪追击法。查线读图法是按照线路根据生产过程的工作步骤依次读图,查线读图法按照以下步骤进行:(1)了解生产工艺与执行电器的关系在分析电气线路之前,应该熟悉生产机械的工艺情况,充分了解生产机械要完成哪些动作,这些动作之间又有什么联系;然后进一步明确生产机械的动作与执行电器的关系,必要时可以画出简单的工艺流程图,给分析电气线路提供方便。例如,车床主轴转动时,要求油泵先给齿轮箱供油润滑,即应保证在润滑泵电动机起动后才允许主拖动电动机起动,对控制线路提出了按顺序工作的联锁要求。图2-2为主拖动电动机M1与润滑油泵电机M2的联锁控制线路图,其中润滑泵电动机是拖动油泵供油的。(2)分析主电路在分析电气线路时,一般应先从电动机着手,根据主电路中有哪些控制元件的主触点、电阻等大致判断电动机是否有正反转控制、制动控制和调速要求等。图2-2车床主电路和控制线路图M13~~3M2QSFU1KM2FR1KM1FR2FR2SB1SB2KM1SB3KM2FR1KM2UVWFU2SB4KM1KM1例如,在图2-2所示的电气线路的主电路中,主拖动电动机M1电路主要由接触器KM2的主触点和热继电器FR1组成。从图中可以断定,主拖动电动机M1采用全压直接起动方式。热继电器FR1作电动机M1的过载保护,由熔断器FU作短路保护。油泵电动机M2电路由接触器KM1的主触点和热继电器FR2组成,该电动机也是采用直接起动方式,并由热继电器FR2作其过载保护,由熔断器FU作其短路保护。(3)分析控制电路通常对控制电路按照由上往下或由左往右依次阅读,可以按主电路的构成情况,把控制电路分解成与主电路相对应的几个基本环节,一个环节一个环节地分析,然后把各环节串起来。首先,记住各信号元件、控制元件或执行元件的原始状态;然后,设想按动了操作按钮,线路中有哪些元件受控动作;这些动作元件的触点又是如何控制其他元件动作的,进而查看受驱动的执行元件有何运动;再继续追查执行元件带动机械运动时,会使哪些信号元件状态发生变化;然后再查对线路信号元件状态变化时执行元件如何动作·····在读图过程中,特别要注意相互的联系和制约关系,直至将线路全部看懂为止。例如,图2-2电气线路的主电路,可以分成电动机M1和M2两个部分,其控制电路也可相应地分解成两个基本环节。其中,停止按钮SB1和启动按钮SB2、热继电器触点FR2、接触器KM1构成直接启动电路;不考虑接触器KM1的常开触点,接触器KM2、热继电器触点FR1、按钮SB3和SB4也构成电动机直接启动电路。这两个基本环节分别控制电动机M2和M1。其控制过程如下:合上刀闸开关QS,按启动按钮SB2:接触器KM1吸引线圈得电,其主触点KM1闭合,油泵电动机M2启动。同时,KM1的一个辅助触点对启动按钮SB2自锁闭合,使电动机M2正常运转;另一个串在KM2线圈电路中的辅助触点闭合,为KM2通电作好准备。按下停止按钮SB1:接触器KM1的吸引线圈失电,KM1主触点断开,油泵电动机M2失电停转。同理,可以分析主拖动电动机M1的起停控制线路。工艺上要求M1必须在油泵电动机M2正常运行后才能启动工作,因此,应将油泵电动机接触器KM1的一个常开辅助触点串入主拖动电动机接触器KM2的线圈电路中,以实现只有接触器KM1通电后,KM2才能通电的顺序控制,即只有在油泵电动机M2启动后主拖动电动机M1才能启动。2.逻辑代数法逻辑代数法又称间接读图法,是通过对电路的逻辑表达式的运算来分析控制电路的,其关键是正确写出电路的逻辑表达式。在继电接触器控制线路中逻辑代数规定如下:继电器、接触器线圈得电状态为“1”,线圈失电状态为“0”;继电器、接触器控制的按钮触点闭合状态为“1”,断开状态为“0”。为了清楚地反映元件状态,元件线圈、常开触点(动合触点)的状态用相同字符(例如接触器为KM)来表示,而常闭触点(动断触点)的状态以KM表示。若KM为“1”状态,则表示线圈得电,接触器吸合,其常开触点闭合,常闭触点断开。得电、闭合都是“l”状态,而断开则为“0”状态。若KM为“0”状态,则与上述相反。查线读图法的优点是直观性强,容易掌握,因而得到广泛采用。其缺点是分析复杂线路时容易出错,叙述也较长。在继电接触器控制线路中,把表示触点状态的逻辑变量称为输入逻辑变量;把表示继电器、接触器等受控元件的逻辑变量称为输出逻辑变量。输出逻辑变量是根据输入逻辑变量经过逻辑运算得出的。输入、输出逻辑变量的这种相互关系称为逻辑函数关系,也可用真值表来表示。(a)逻辑非(b)逻辑与(c)逻辑或1)逻辑非图2-3(a)所示电路实现逻辑非运算。其公式为:KM=该公式的含意是:当KA=1,=0,常闭触点KA断开,则KM=0,线圈不得电;当KA=0,=1,常闭触点KA闭合,则KM=1,线圈得电吸合。逻辑非运算规则:KAKAKA0=11=0(2)逻辑与逻辑与用触点串联实现,图2-3(b)所示的KA1和KA2触点串联电路实现了逻辑与运算,逻辑与运算用符号“·”表示。其公式为:KM=KA1·KA2该公式的含意是:只有当KA1=1与KA2=1时,KM=1,否则便为0。对于电路来说,只有当触点KA1与KA2都闭合时,线圈KM才得电,为“1”状态。显然,逻辑与的运算规则是:0·0=00·1=01·0=01·1=1(3)逻辑或逻辑或用触点并联电路实现,图2-3(c)所示的并联电路实现逻辑或运算,逻辑或运算用符号“+”表示。其公式为:KM=KA1+KA2该公式的含意是:当KA1=1或KA2=1时,KM=1。对于电路来说,触点KA1或KA2任一个闭合时,线圈KM都得电为“1”。逻辑或的运算规则是:0+0=00+1=11+0=11+1=1逻辑代数法读图的优点是,各电气元件之间的联系和制约关系在逻辑表达式中一目了然。通过对逻辑函数的具体运算,一般不会遗漏或看错电路的控制功能。而且采用逻辑代数法后,对电气线路采用计算机辅助分析提供了方便。该方法的主要缺点是,对于复杂的电气线路,其逻辑表达式很繁琐冗长。2.2电气控制的基本控制环节异步电动机起、停、保护电气控制线路是广泛应用的、也是最基本的控制线路,以三相交流异步电动机和由其拖动的机械运动系统为控制对象,通过由接触器、熔断器、热继电器和按钮等所组成的控制装置对控制对象进行控制。如图2-4所示,该线路能实现对电动机起动、停止的自动控制,并具有必要的保护。一、启动电动机和自锁环节图2-4简单的起、停、保护控制线路1.启动电动机按起动按钮SB2:接触器KM的吸引线圈得电,主触点KM闭合,电动机起动。同时,KM辅助常开触点闭合,当松手断开SB2起动按钮后,吸引线圈KM继续保持通电,故电动机不会停止。电路中接触器KM的辅助常开触点并联于起动按钮SB2称为“自锁”环节。“自锁”环节一般是由接触器KM的辅助常开触点与主令电器的常开触点并联组成,这种由接触器(继电器)本身的触点来使其线圈长期保持通电的环节叫“自锁”环节。“自锁”环节具有对命令的“记忆”功能,当起动命令下达后,能保持长期通电;而当停机命令或停电出现后不会自启动。自锁环节不仅常用于电路的启、停控制,而且凡是需要“记忆”的控制都可以经常运用自锁环节。2.停止电动机按停止按钮SB1:接触器KM的吸引线圈失电,KM主触点断开,电动机失电停转。同时,KM辅助触点断开,消除自锁电路,清除“记忆”。3.线路保护环节线路保护环节包括短路保护、过载保护、欠压和零压保护等。短路保护:短路时通