二次函数y=a(x-h)2的图象和性质11.19y=ax2+ca0a0图象开口对称性顶点增减性二次函数y=ax2+c的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减c0c0c0c0(0,c)画出二次函数、的图像,并考虑它们的开口方向、对称轴和顶点.:2)1(21xy2)1(21xy12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-102)1(21xyx=-1(1)抛物线与的开口方向、对称轴、顶点?2)1(21xy2)1(21xy(2)抛物线有什么关系?2)1(21xy2)1(21xy221xy2)1(21xy与抛物线2)1(21xy2)1(21xy12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-102)1(21xy2)1(21xy2)1(21xy向左平移1个单位2)1(21xy221xy221xy221xy221xy向右平移1个单位即:抛物线、有什么关系?顶点(0,0)顶点(2,0)直线x=-2直线x=2654321-1-2-3-4-8-6-4-2246B221xy2221xy2221xy221xy向右平移2个单位向左平移2个单位2)2(21xy2)2(21xy顶点(-2,0)对称轴:y轴即直线:x=0在同一坐标系中作出下列二次函数:221xy2)2(21xy2)2(21xy观察三条抛物线的相互关系,并分别指出它们的开口方向,对称轴及顶点.向右平移2个单位向右平移2个单位向左平移2个单位向左平移2个单位一般地,抛物线y=a(x-h)2有如下特点:(1)对称轴是x=h;(2)顶点是(h,0).(3)抛物线y=a(x-h)2可以由抛物线y=ax2向左或向右平移|h|得到.h0,向右平移;h0,向左平移xy左加右减y=−2(x+3)2说出抛物线的开口方向、对称轴、顶点,最大值或最小值各是什么及增减性如何?。y=2(x-3)2y=−2(x-2)2y=3(x+1)2y=a(x-h)2a0a0图象开口对称性顶点增减性二次函数y=a(x-h)2的性质开口向上开口向下a的绝对值越大,开口越小直线x=h顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减h0h0h0h0(h,0)例1.填空题(1)二次函数y=2(x+5)2的图像是,开口,对称轴是当x=时,y有最值,是.(2)二次函数y=-3(x-4)2的图像是由抛物线y=-3x2向平移个单位得到的;开口,对称轴是,当x=时,y有最值,是.抛物线向上直线x=-5-5小0右4向下直线x=44大0(3)将二次函数y=2x2的图像向右平移3个单位后得到函数的图像,其对称是,顶点是,当x时,y随x的增大而增大;当x时,y随x的增大而减小.(4)将二次函数y=-3(x-2)2的图像向左平移3个单位后得到函数的图像,其顶点坐标是,对称轴是,当x=时,y有最值,是.y=2(x-3)2直线x=3(3,0)>3<3y=-3(x+1)2(-1,0)直线x=-1-1大0(5)将函数y=3(x-4)2的图象沿x轴对折后得到的函数解析式是;将函数y=3(x-4)2的图象沿y轴对折后得到的函数解析式是;y=-3(x-4)2y=3(x+4)2(6)把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=-3(x-h)2的图象,则a=,h=.若抛物线y=a(x-4)2的顶点A,且与y轴交于点B,抛物线y=-3(x-h)2的顶点是M,则SΔMAB=.-3-2144(7)将抛物线y=2x2-3先向上平移3单位,就得到函数的图象,在向平移个单位得到函数y=2(x-3)2的图象.y=2x2右31、若将抛物线y=-2(x-2)2的图象的顶点移到原点,则下列平移方法正确的是()A、向上平移2个单位B、向下平移2个单位C、向左平移2个单位D、向右平移2个单位C练习2、抛物线y=4(x-3)2的开口方向,对称轴是,顶点坐标是,抛物线是最点,当x=时,y有最值,其值为。抛物线与x轴交点坐标,与y轴交点坐标。向上直线x=3(3,0)低3小0(3,0)(0,36)y=2x23、把抛物线向左平移3个单位,可得到抛物线.右4y=2x2y=2(x-1)24、把抛物线向平移个单位,可得到抛物线y=2(x+3)25、把抛物线向平移个单位,可得到抛物线y=-23(x+2)2y=-23(x-5)22288yxxy=2x26、把抛物线向平移个单位,可得到抛物线y=2(x+3)2y=2(x-1)27、说出下列抛物线的开口方向、顶点坐标和对称轴:y=(x+1)2(1)y=-(x-5)2(2)y=2(x-3)2(3)y=-12(x+3)2(5)y=-2(x-1)2(4)y=(x+1)2(1)y=-(x-5)2(2)y=2(x-3)2(3)y=-12(x+3)2(5)y=-2(x-1)2(4)8、根据下列函数的解析式回答当x为何值时,y随x的增大而增大?函数开口方向对称轴顶点坐标Y的最值增减性在对称轴左侧在对称轴右侧y=ax2a>0a<0y=ax2+ca>0a<0y=a(x-h)2a>0a<0向上Y轴(0,0)最小值是0Y随x的增大而减小Y随x的增大而增大向下Y轴(0,0)最大值是0Y随x的增大而增大Y随x的增大而减小向上Y轴(0,c)最小值是CY随x的增大而减小Y随x的增大而增大向下Y轴(0,c)最大值是CY随x的增大而增大Y随x的增大而减小向上直线x=h(h,0)Y随x的增大而减小最小值是0Y随x的增大而增大向下直线x=h(h,0)最大值是0Y随x的增大而增大Y随x的增大而减小2)1(43xy2)3(43xy2)5(43xy2)1(43xy26)(x21y32x21y如何平移:1.用配方法把下列函数化成y=a(x-h)2的形式,并说出开口方向,顶点坐标和对称轴。96)1(2xxy2221)2(2xxy2、按下列要求求出二次函数的解析式:(1)已知抛物线y=a(x-h)2经过点(-3,2)(-1,0)求该抛物线线的解析式。(2)形状与y=-2(x+3)2的图象形状相同,但开口方向不同,顶点坐标是(1,0)的抛物线解析式。(3)已知二次函数图像的顶点在x轴上,且图像经过点(2,-2)与(-1,-8)。求此函数解析式。