NoBoundariesANSYS热分析指南——————————————————————————————————————————————目录第一章简介……………………………………………………………………….1一、热分析的目的…………………………………………………………1二、ANSYS的热分析………………………………………………………1三、ANSYS热分析分类……………………………………………………1四、耦合分析…………………………………………………………….1第二章基础知识…………………………………………………………………2一、符号与单位………………………………………………………….2二、传热学经典理论回顾………………………………………………2三、热传递的方式………………………………………………………3四、稳态传热……………………………………………………………3五、瞬态传热……………………………………………………………4六、线性与非线性………………………………………………………4七、边界条件、初始条件…………………………………………………4八、热分析误差估计……………………………………………………4第三章稳态传热分析……………………………………………………………5一、稳态传热的定义……………………………………………………5二、热分析的单元………………………………………………………5三、ANSYS稳态热分析的基本过程……………………………………5实例1………………………………………………………………………9实例2………………………………………………………………………12第四章瞬态传热分析…………………………………………………………20一、瞬态传热分析的定义………………………………………………20二、瞬态热分析的单元及命令…………………………………………20三、ANSYS瞬态热分析的主要步骤……………………………………20四、建模…………………………………………………………………20五、加载求解……………………………………………………………21六、后处理………………………………………………………………23七、相变问题…………………………………………………………..23实例1……………………………………………………………………24实例2…………………………………………………………………….25第五章热辐射NoBoundariesANSYS热分析指南——————————————————————————————————————————————第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。二、ANSYS的热分析在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。三、ANSYS热分析分类稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等NoBoundariesANSYS热分析指南——————————————————————————————————————————————第二章基础知识一、符号与单位项目国际单位英制单位ANSYS代号长度mft时间ss质量Kglbm温度℃oF力Nlbf能量(热量)JBTU功率(热流率)WBTU/sec热流密度W/m2BTU/sec-ft2生热速率W/m3BTU/sec-ft3导热系数W/m-℃BTU/sec-ft-oFKXX对流系数W/m2-℃BTU/sec-ft2-oFHF密度Kg/m3lbm/ft3DENS比热J/Kg-℃BTU/lbm-oFC焓J/m3BTU/ft3ENTH二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:对于一个封闭的系统(没有质量的流入或流出〕PEKEUWQ式中:Q——热量;W——作功;U——系统内能;KE——系统动能;PE——系统势能;对于大多数工程传热问题:0==PEKE;通常考虑没有做功:0W,则:UQ;对于稳态热分析:0UQ,即流入系统的热量等于流出的热量;对于瞬态热分析:dtdUq,即流入或流出的热传递速率q等于系统内能的变化。NoBoundariesANSYS热分析指南——————————————————————————————————————————————三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dxdTkq,式中q为热流密度(W/m2),k为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。2、热对流热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量的交换。热对流可以分为两类:自然对流和强制对流。热对流用牛顿冷却方程来描述:)(BSTThq,式中h为对流换热系数(或称膜传热系数、给热系数、膜系数等),TS为固体表面的温度,TB为周围流体的温度。3、热辐射热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。物体温度越高,单位时间辐射的热量越多。热传导和热对流都需要有传热介质,而热辐射无须任何介质。实质上,在真空中的热辐射效率最高。在工程中通常考虑两个或两个以上物体之间的辐射,系统中每个物体同时辐射并吸收热量。它们之间的净热量传递可以用斯蒂芬—波尔兹曼方程来计算:qAFTT1121424(),式中q为热流率,为辐射率(黑度),为斯蒂芬-波尔兹曼常数,约为5.67×10-8W/m2.K4,A1为辐射面1的面积,F12为由辐射面1到辐射面2的形状系数,T1为辐射面1的绝对温度,T2为辐射面2的绝对温度。由上式可以看出,包含热辐射的热分析是高度非线性的。四、稳态传热如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。稳态热分析的能量平衡方程为(以矩阵形式表示)KTQ式中:K为传导矩阵,包含导热系数、对流系数及辐射率和形状系数;T为节点温度向量;Q为节点热流率向量,包含热生成;ANSYS利用模型几何参数、材料热性能参数以及所施加的边界条件,生成K、T以及Q。NoBoundariesANSYS热分析指南——————————————————————————————————————————————五、瞬态传热瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。根据能量守恒原理,瞬态热平衡可以表达为(以矩阵形式表示):CTKTQ式中:K为传导矩阵,包含导热系数、对流系数及辐射率和形状系数;C为比热矩阵,考虑系统内能的增加;T为节点温度向量;T为温度对时间的导数;Q为节点热流率向量,包含热生成。六、线性与非线性如果有下列情况产生,则为非线性热分析:①、材料热性能随温度变化,如K(T),C(T)等;②、边界条件随温度变化,如h(T)等;③、含有非线性单元;④、考虑辐射传热非线性热分析的热平衡矩阵方程为:CTTKTTQT七、边界条件、初始条件ANSYS热分析的边界条件或初始条件可分为七种:温度、热流率、热流密度、对流、辐射、绝热、生热。八、热分析误差估计仅用于评估由于网格密度不够带来的误差;仅适用于SOLID或SHELL的热单元(只有温度一个自由度);基于单元边界的热流密度的不连续;仅对一种材料、线性、稳态热分析有效;使用自适应网格划分可以对误差进行控制。NoBoundariesANSYS热分析指南——————————————————————————————————————————————第三章稳态传热分析一、稳态传热的定义稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度、热梯度、热流率、热流密度等参数二、热分析的单元热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种:线性:LINK32两维二节点热传导单元LINK33三维二节点热传导单元LINK34二节点热对流单元LINK31二节点热辐射单元二维实体:PLANE55四节点四边形单元PLANE77八节点四边形单元PLANE35三节点三角形单元PLANE75四节点轴对称单元PLANE78八节点轴对称单元三维实体SOLID87六节点四面体单元SOLID70八节点六面体单元SOLID90二十节点六面体单元壳SHELL57四节点点MASS71有关单元的详细解释,请参阅《ANSYSElementReferenceGuide》三、ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:前处理:建模求解:施加载荷计算后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;NoBoundariesANSYS热分析指南——————————————————————————————————————————————④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYSModelingandMeshingGuide》。2、施加载荷计算①、定义分析类型如果进行新的热分析:Command:ANTYPE,STATIC,NEWGUI:MainmenuSolution-AnalysisType-NewAnalysisSteady-state如果继续上一次分析,比如增加边界条件等:Command:ANTYPE,STATIC,RESTGUI:MainmenuSolutionAnalysisType-Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件):a、恒定的温度通常作为自由度约束施加于温度已知的边界上。CommandFamily:DGUI:MainMenuSolution-Loads-Apply-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。CommandFamily:FGUI:MainMenuSolution-Loads-Apply-Thermal-HeatFlowc、对流对流边界条件作为面载施加于实体的外表面,计算与流体的热交换,它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流。CommandFamily:SFGUI:MainMenuSolution-Loads-Appl