MarineNitrogenCycleSchedule•Overview•Distributions•Nitrogenbudget•NitrogenChallenges生物泵是指由有机物生产、消费、沉降和分解等一系列生物学过程完成的碳由表层向深层的转移。植物和动物碎屑沉降在海洋中,某些沉降物将分解并作为营养物回到上层海水中,但也有大约1%到达深海或海床在那里被沉积而不再进入物质循环。OfparticularimportancearetheprocessesofnitrogenfixationanddenitrificationNicolasGruber,2006ThemajorreactionsPrincipalfeaturesofthemarinenitrogencycle.MarenVossandJosephP.Montoya,nature,(2009)1.Anammox(厌氧氨氧化)involvingthegenerationofN2frominorganicconstituentsbyautotrophicmicrobes.2.Nitrogenfixation.固氮3.Nitrification.硝化4.Heterotrophicdenitrification.(异养反硝化):N2,NH4+,N2OandCO25.Dissimilatorynitratereductiontoammonium(DNRA).异化型硝酸盐还原TheN2-outputpathways:1and4Themajorreactions•NitrogenfixationN2+8e+nATP+8H+固氮酶2NH3+H2+nADP+nPi海洋固氮生物:蓝细菌类、光合细菌类、异养细菌类开阔大洋最主要的固氮生物:束毛藻N2固定的新生氮源主要通过以下途径进入生态系统的生产力组成:①固氮生物体→分泌、死亡分解产生有机氮细菌分解转化可溶性无机氮→被其它植物吸收,产生初级生产力②固氮生物体→分泌、死亡分解产生有机氮细菌直接利用微生物自身生物量→微型食植动物→后生动物,进入食物网③固氮生物生物固碳、固氮提供化合态氮→促进其它浮游植物进行生物固碳,形成有机物质和生物体→被滤食性动物、浮游动物、杂食性动物和鱼类等所食→进入食物链,产生综合生产力Themajorreactions•Denitrification传统观点氨(NH3)只能在有氧条件下才能被氧化成亚硝氮(NO2-)或硝氮(NO3-)。NO2-或NO3-再被还原成氮气(N2)释放。新研究厌氧条件下某些特殊的微生物能够以NH4+作为电子供体,以NO2-作为电子受体,生成氮气。ProfessorGijsKuenenAnammox(AnaerobicAmmoniumOxidation)NH4++NO2-N2+2H2ONH4+Convertsnitrate(NO3-)Nitrite(NO2-)NitrousOxide(N2O)Nitrogengas(N2)C106H175O42N16P+104NO3-→106CO2+60N2+H3PO4+138H2OAnammox•Anammoxbacteria厌氧氨氧化菌Heterotrophicdenitrification异养反硝化NO2-NH4+DNRA硝酸异化还原成铵N2Anammox•Substrates基质的提供厌氧氨氧化菌是革兰氏阴性椭球状自养菌,专性厌氧。Twooceans,twonitrogencyclesMarenVoss,etal.Nature(2009)1.Anammox;2.remineralization再矿化;3.nitratereduction硝酸盐还原;4.heterotrophicdenitrification异养反硝化;5.DNRA.PON,particulateorganicnitrogen•OMZ层中提供的有机质含量和持续时间是决定二者差异的重要因素theArabianSeaETSP生产力高,拥有大量的微生物,表层海水生物量大生产力低,只有在因海水运动而输送有机质至最低含氧区,其反应过程才会和ArabianSea类似denitrification反硝化Anammox-DNRAN2O的重要来源异养性质,减弱生物泵的作用不产生温室气体减少CO2净产量,增强生物泵的作用ShiftsintheproductivityoftheoceansduetorisingtemperaturesandlevelsofCO2arelikelytoaffectthedistributionandextentofOMZs.Knowingwhichnitrogencycleprocessesareatwork,andwhere,willbeanessentialaspectofgaugingthelikelyresponseoftheoceanstoglobal-scalechangesintemperatureandCO2.Themajorreactions•assimilationofnitrogen106CO2+16NH4++HPO42-+48H2O+14OH-→C106H175O42N16P+118O2106CO2+16NO3-+HPO42-+78H2O+18H+→C106H175O42N16P+150O2NO2-isusuallyonlyaveryminorsourceofnitrogenforphytoplankton,asitsconcentrationisoftenanorderofmagnitudelowerthanthatofNO3-andNH4+NicolasGruber,2005Distributions1.GlobalmeanprofilesNotethattheNH4+andNO2-concentrationsweremultipliedbyafactorof100toseetheirvariationsNicolasGruber,(2009)surfacefromtheWorldOceanAtlas(2001)2.NitratedistributionInterioroceandistributionNO3-浓度和PO43-、溶解性有机碳含量密切相关营养物质的分配主要受生物地球化学循环的控制(biology,oceancirculation)3.Ammoniumdistributionfourmajorprocessstudies:•theAESOPSstudyintheSouthernOcean•theArabianSeastudy•theEqPacprogramintheEquatorialPacific•theNABEexperimentintheNorthAtlantic差异:温度、生产力、透光层的深度、光线强度、PON的可利用性withoutconsiderationofexactlocationorseasonSouthernoceanArabianSeaEquatorialPacificNorthAtlantic4.Nitritedistribution•Turnovertime:3~7days由硝酸盐同化、硝化、反硝化等过程产生,继而很快又被消耗•最大浓度出现在最低氧量区附近(O21~5μmol·kg-1)。这是硝化和反硝化过程均产生NO2-的叠加效果5.PONdistribution•Turnovertime:2weeks•占总有机氮库的5%•从细小颗粒(marinesnow)到大团聚体(fecalpellets)•易沉降,是海洋生物泵的重要组成部分海底空间和透光深度的差异海洋生物的差异(主要是浮游植物)Budges1.OceanicNitrogenbudgetSarmientoandGruber,2006ThemarineNitrogen-cycleandclimate•海洋氮循环与碳循环密切相关,氮库的变化会导致海洋生产力的变化,最终影响CO2在大气-海洋中的分配。•脱氮过程的加剧→产生更多的N2O•过去的年代里海洋氮循环的变化可能相当大:1.冰期和间冰期转换→N2O浓度发生变化2.反硝化程度发生过巨大变化NitrogenChallengesControlsonthemarinefixedNitrogen-content控制海洋的固定氮组分:建立一个发达的负反馈机制,以防治初始扰动效应的增长。反硝化作用营养盐生物产值沉降的有机氮Ifthisviewiscorrect,thisfeedbackswouldprovidearathertightcontrolofthemarinenitrogencycle,creatingawellbalancedhomeostasis.NitrogenChallengesCouplingbetweenmarinenitrogenfixationanddenitrificationzonesDouglasG.CaponeandAngelaN.Knapp,nature(2007)ThankU!