15.3分式方程第十五章分式第1课时分式方程及其解法一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?解:设江水的流速为x千米/时.9060.30+30xx创设情境温故探新分式方程一906030+30xx①定义:此方程的分母中含有未知数x,像这样分母中含未知数的方程叫做分式方程.合作交流探究新知13(2)2xx2(1)23xx3(3)2xx(1)(4)1xxx105126xx)(215xx)(2131xxx437xy判一判下列方程中,哪些是分式方程?哪些整式方程.整式方程分式方程你能试着解这个分式方程吗?(2)怎样去分母?(3)在方程两边乘什么样的式子才能把每一个分母都约去?(4)这样做的依据是什么?解分式方程最关键的问题是什么?(1)如何把它转化为整式方程呢?“去分母”906030+30xx①方程各分母最简公分母是:(30+x)(30-x)解:方程①两边同乘(30+x)(30-x),得检验:将x=6代入原分式方程中,左边==右边,因此x=6是原分式方程的解.90(30-x)=60(30+x),906030+30xx①解得x=6.x=6是原分式方程的解吗?52由上可知,江水的流速为6km/h.解分式方程①的基本思路:是将分式方程化为整式方程,具体做法是“去分母”即方程两边同乘最简公分母.这也是解分式方程的一般方法.归纳下面我们再讨论一个分式方程:2110 525xx②检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,相应的分式无意义.因此x=5虽是整式方程x+5=10的解,但不是原分式方程的解,实际上,这个分式方程无解.2110525xx解:方程②两边同乘(x+5)(x-5),得x+5=10,解得x=5.x=5是原分式方程的解吗?想一想:上面两个分式方程中,为什么去分母后所得整式方程的解就是原分式方程的解,而去分母后所得整式方程的解却不是原分式方程的解呢?906030+30xx①2110 525xx②真相揭秘:分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.我们再来观察去分母的过程:90(30-x)=60(30+x)两边同乘(30+x)(30-x)当x=6时,(30+x)(30-x)≠0906030+30xx①真相揭秘:分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解。x+5=10两边同乘(x+5)(x-5)当x=5时,(x+5)(x-5)=02110 525xx②解分式方程时,去分母后所得整式方程的解有可能使原方程的分母为0,所以分式方程的解必须检验.怎样检验?这个整式方程的解是不是原分式的解呢?分式方程解的检验------必不可少的步骤检验方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.1.在方程的两边都乘以最简公分母,约去分母,化成整式方程.2.解这个整式方程.3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去。4.写出原方程的根.简记为:“一化二解三检验”.知识要点“去分母法”解分式方程的步骤例1解方程23.3xx解:方程两边乘x(x-3),得2x=3x-9.解得x=9.检验:当x=9时,x(x-3)≠0.所以,原分式方程的解为x=9.范例研讨运用新知例2解方程31.1(1)(2)xxxx解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:当x=1时,(x-1)(x+2)=0,因此x=1不是原分式方程的解。所以,原分式方程无解.用框图的方式总结为:分式方程整式方程去分母解整式方程x=a检验x=a是分式方程的解x=a不是分式方程的解x=a最简公分母是否为零?否是D1.要把方程化为整式方程,方程两边可以同乘以()250363yyA.3y-6B.3yC.3(3y-6)D.3y(y-2)2.解分式方程时,去分母后得到的整式方程是()A.2(x-8)+5x=16(x-7)B.2(x-8)+5x=8C.2(x-8)-5x=16(x-7)D.2(x-8)-5x=88587142xxxxA反馈练习巩固新知2(1)(1)2(1).xxxxx12.x11)0.4xx(3.解方程:12.1xxxx解:去分母,得解得检验:把代入12.x所以原方程的解为12.x分式方程定义分母中含有未知数的方程叫做分式方程注意(1)去分母时,原方程的整式部分漏乘.步骤(去分母法)一化(分式方程转化为整式方程);二解(整式方程);三检验(代入最简公分母看是否为零)(2)约去分母后,分子是多项式时,没有添括号.(因分数线有括号的作用)(3)忘记检验课堂小结