等腰三角形难题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共18页)等腰三角形补充练习一.选择题(共3小题)1.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°2.如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个B.8个C.9个D.10个3.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α二.填空题(共14小题)5.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为.6.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为.第2页(共18页)7.有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是度.8.如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是.9.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为个.10.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.第3页(共18页)11.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠An的度数为.12.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.13.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.14.如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=.15.线段AB和直线l在同一平面上.则下列判断可能成立的有个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形第4页(共18页)直线l上恰好只有个5点P,使△ABP为等腰三角形直线l上恰好只有个6点P,使△ABP为等腰三角形.16.如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,可得△D1E1F1,则△D1E1F1的面积S1=;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=AB,则△D2E2F2的面积S2=;按照这样的思路探索下去,Dn,En,Fn分别是△ABC三边上的点,且ADn=BEn=CFn=AB,则Sn=.17.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是.18.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.第5页(共18页)2017年08月23日139****2832的初中数学组卷参考答案与试题解析一.选择题(共4小题)1.(2016秋•资中县期末)在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°【解答】解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故选:D.2.(2016春•乳山市期中)如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()第6页(共18页)A.7个B.8个C.9个D.10个【解答】解:如图所示,以A为圆心,AB长为半径画弧,则圆弧经过的格点C3、C8、C7即为点C的位置;以B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C6、C4、C5即为点C的位置;作线段AB的垂直平分线,垂直平分线没有经过格点.故以A、B、C为等腰三角形顶点的所有格点C的个数为8个.故选(B)3.(2015•天心区校级自主招生)如图,已知等边△ABC外有一点P,P落在∠BAC内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4B.8C.9D.12【解答】解:设等边三角形ABC的边长为a,连接PA、PB、PC,则S△PAB+S△PAC﹣S△PCB=S△CAB,即ah1+ah2﹣ah3=,第7页(共18页)∴a(h2+h3﹣h1)=,∵h2+h3﹣h1=6,∴a=4,∴S△CAB==12,故选(D).4.(1998•杭州)如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α【解答】解:根据题意:在△ABC中,AB=AC∴∠B=∠C∵AE=AD∴∠ADE=∠AED,即∠B+∠α﹣∠EDC=∠C+∠EDC化简可得:∠α=2∠EDC∴∠EDC=α.故选A.二.填空题(共14小题)5.(2016•江西模拟)在同一平面内,已知点P在等边△ABC外部,且与等边△第8页(共18页)ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为15°或30°或60°或75°或150°.【解答】解:根据点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,作出如下图形:由图可得:∠AP1C=15°,∠AP2C=30°,∠AP3C=60°,∠AP4C=75°,∠AP5C=150°.故答案为:15°或30°或60°或75°或150°6.(2016秋•东阿县期中)等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为67.5°或22.5°.【解答】解:有两种情况;(1)如图,当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;第9页(共18页)(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,故答案为:67.5°或22.5°.7.(2013•香坊区三模)有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是36°或60°度.【解答】解:假设等腰三角形甲为ABC,等腰三角形乙为DEF(如图所示).①顶角为D根据题中的条件,甲的底长等于乙的腰长,甲的底角等于乙的顶角,我们可以将D挪到B点,使BC与DE重合,DF与AB重合,如果A为锐角,则F点在AB边上,由于CF=AC,由图知是不可能的.如果A为钝角,则F点在AB延长线上,由于CF=AC,得知乙的底角=2倍的顶角=2倍甲的底角,故可以解得甲的底角是36度;②当等腰三角形甲和乙都是等边三角形时,∠1=∠2=∠3=60°,即甲的底角是60°.故答案是:36°或60°.第10页(共18页)8.(2013•泰州一模)如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是18≤θ<22.5.【解答】解:∵A1A2=AA1∴θ1=∠A2A1A3=2θ,∴θ2=∠A2A4A3=θ+2θ=3θ,∴θ3=∠A2A4A3+θ=4θ,由题意得:,∴18°≤θ<22.5°.9.(2013•宜兴市一模)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为6个.【解答】解:如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,第11页(共18页)③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分别以点A、B为圆心,以AB长为半径画圆,P5、P6为满足条件的点,综上所述,满足条件的所有点P的个数为6.故答案为:6.10.(2013•安徽模拟)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是①②③④.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.【解答】解:∵PR=PS,PR⊥AB,PS⊥AC,∴P在∠A的平分线上,在Rt△ARP和Rt△ASP中,∵,∴Rt△ARP≌Rt△ASP(HL),第12页(共18页)∴AS=AR,∠QAP=∠PAR,∵AQ=PQ,∴∠PAR=∠QPA,∴∠QPA=∠QAR∴QP∥AR,∵△ABC为等边三角形,∴∠B=∠C=∠BAC=60°,∴∠PAR=∠QPA=30°,∴∠PQS=60°,在△BRP和△QSP中,∵,∴△BRP≌△QSP(AAS),∴①②③④项四个结论都正确,故答案为①②③④.11.(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠An的度数为.【解答】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;同理可得,第13页(共18页)∠DA3A2=20°,∠EA4A3=10°,∴∠An=.故答案为:.12.(2012•枣阳市校级模拟)已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为8或6,底边长为5或9.【解答】解:根据题意画出图形,如图所示,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,①若AB+AD的长为12,则2x+x=12,解得x=4,则x+y=9,即4+y=9,解得y=5;②若AB+AD的长为9,则2x+x=9,解得x=3,则x+y=12,即3+y=12,解得y=9;所以等腰三角形的底边为5时,腰长为8;等腰三角形的底边为9时,腰长为6;故答案为:8或6;5或913.(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.第14页(共18页)【解答】解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为:.14.(2011•鄂州校级模拟)如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=70°.【解答】解:在BC下方取一点D,使

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功