Chapter3GraphicalPresentationofDataandNormalDistributionOutline•1.Frequencytable•2.FrequencyDistribution•3.NormalDistribution•SkewandKurtosis•4.Reportingtheresults•5.InterpretingtheresultsIntroductionTwomethodstodescribedata:1)numbers:summaryvalues,alsocalleddescriptivestatistics,mean,SD,modeetc.2)graphs:frequencydistribution1.Frequencytable•Awayoforganizingthedatabylistingeverypossibleobservationasacolumnandthefrequenciesofoccurrenceofeachobservationasanother.•SPSSfor1group:•Analyze---Frequencies---SelectStatisticsforM,SD,Range,Modeetc.---SelectChartsforbarcharts,piechartsorhistograms•Iffrequenciesforthegrouparelow,thenregroup…1.Frequencytable•UsingSPSStoregroupthedataandanalyze1)Transform—Recode—IntoDifferentVariables2)VariableofregroupingtoNumericVariableOutput3)Among“OutVariable”,providinganameofvariableto“Name”,e.g.regroup,click“Change”.4)Definetherangein“OldandNewvalues”---e.g.50—69=1,70-89=2,90-119=3,120-139=4,140-169=5(见SPSS文件描述统计分组)clickRange---fillinginthenumber,e.g.50through69----NewValueforeachnewgroup(1-5)---ClickAdd5)Analyzethenumbersof“regroup”,youwillseethedifference.2.FrequencyDistribution2.1Barchart条形图(for2groupsselectCluster)•Constructedfromafrequencytableof2groups:•Horizontalaxis(X):categories•Verticalaxis(Y):frequencies•SPSS:•Graph----LegacyDialogs---Bar---Cluster---Define---BarRepresent(selectNofcases)---CategoryAxis(adding“regroup”)---DefinedClustersby(adding“group”)---Title(nameatitle)---ClickOK2.FrequencyDistribution2.2LineCharts线图(for2groups)sameasBarCharts•2.3Area面积图,Pie饼图,Histogram直方图Charts•Nogroupschart,onlysimplecharts•Histogramwithnormalcurve(seenextpicture)3.NormalDistribution•Symmetricasbell-shaped•EachmemberofthefamilyisdeterminedbythevaluesofthemeanandSD.•Mean:anypositiveandnegative•SD:anypositiveandnegative•Ameanof0andaSDof1,itiscalledstandardnormaldistribution(seepicture)3.NormalDistribution3.1FeaturesofNormalDistribution•1)只有一个高峰,即只有一个最高点,“中间高,两边低”,类似尖塔或古钟;•2)有一个对称轴。曲线在高峰处有一个对称轴,轴的左右两边是对称的。•3)曲线无论向左或向右延伸,都愈来愈接近轴线,但不会和横轴相交,以横轴为渐近线。•4)中数、众数及平均数必须重叠。(李绍山,2008:59-69;韩宝成,2000:33)3.2TableofNormalDistribution•Z(标准分)=1.00,A(面积)=0.34134•Z=1.96,A=0.47500•Z=2,A=0.47725•Z=2.58,A=0.49506•Z=3.00,A=0.49865•(李绍山,2008:61,•查正态分布表p195)3.3Theapplicationofthetheoryofnormaldistribution对A\B两组学生测试,A组的平均数为20,SD为3,学生得了23分(20+3),比平均数多1个标准分的值,这个值在在正态分布中所占面积为84.1%(50%+34.1%),即,得23分的学生比84.1%的学生好。B组X‘也是20,但SD为14,要比84.1%的学生好,要取得平均分+14的分数(20+14=34)(李绍山,2008:63-66;韩宝成,2000:34)•3.4Methodsfornormaldistribution•1)绘制直方图,可以直观看出;•2)比较理论分布与实际分部中各标准差的面积或概率•3)计算数据分部的偏态值和峰值。•(李绍山,2008:66-67)3.4Skew(偏态值)Kurtosis(峰值)•Ifthedistributionislopsidedratherthansymmetrical,itissaidtobeskewed.(分部不对称,称为“偏态”)•Positivelyskew:(正偏态)--正值,SK0--morescoresaretotherightofthemode--themeanandmedianarebiggerthanthemode—morelowscores(低分偏高)•Negativeskew(负偏态)--负值,SK0--Morescoresaretotheleftofthemode--themeanandmedianaresmallerthanthemode--morehighscores(高分偏多)Normal——Zerovalue,SK=0•(Howitt&Cramer,2000,p.34-35)3.4Skew(偏态值)kurtosis(峰值)Kurtosis:•Thetermusedtoidentifythedegreeofsteepnessorshallownessofadistribution.(分布曲线的顶点尖峭程度)--astepcurve--leptokurtic(K0,正值,尖峰态)--anormalcurve—mesokurtic(0值,正态)--aflatcurve—platykurtic(K0,负值,低峰态)•(Howitt&Cramer,2000,p.34-35)4.Reportingtheresults•Seewordfile“Chapter3ReportingData”5.Interpretingtheresults•Examples•Seepdf“suggestionsandtextbooks”“留学生汉语语用能力调查”•Seewordfile“整体听写有效性”