-1-3.2分式的乘除法同步练习一、选择题1.下列各式从左到右的变形不正确的是()A.yy3232.B.xyxy66C.yxyx4343D.yxyx38382.下列分式运算,结果正确的是()A.nmmnnm3454;B.bcaddcbaC.222242baabaa;D.3334343yxyx3.要使分式1122aa有意义,则a取值应是()A.-1B.1C.1D.任意实数4.已知72yx,则222273223yxyxyxyx的值是()A.10328B.1034C.10320D.10375.分式12aaa有意义的a取值应是()A.任意实数B.a1C.a1D.a0或16把分式则分式的值倍都扩大中,2b,a2baa()A.扩大4倍B.扩大2倍C.缩小2倍D.不变7.若xxx22化简得1xx,则x应满足的条件是()A.x0B.x0C.x0D.x1二、8.22442bcaab;9.222210522yxabbayx;10.xxxxx1222;11.若m等于它的倒数,求分式22444222mmmmmm的值;12.若分式4321xxxx有意义,求x的取值范围;13.计算-4425mnmnnm;14.计算22322358154mabmba;15.计算(xy-x2)xyyx.-2-3.3分式的加减法同步练习1.已知x0,则xxx31211等于()A.x21B.x61C.x65D.x6112.化简xyyxzxxzyzzy649332232可得到()A.零B.零次多项式C.一次多项式D.不为零的分式3计算22babab得()A.22abbabB.abC.22ababD.ab4.在分式①;3yxx②222baab;③;23baa④))((2babaab中分母相同的分式是()A.①③④B.②③C.②④D.①③5.7.ba2aabbba2ba;8.1bababa;9.若ab=2,a+b=-1,则ba11的值为;10.计算abba6543322;11.化简分式yxxyyxyxxyyx44的结果是;12.计算:(1)329122mm;(2)969392222xxxxxxx;13.化简2142122aaaaaaa;14.先化简,再求值:,21212xxx其中x=-3.5.15.先化简,再求值:11123132xxxxxx,其中x=2+1.-3-3.2答案:1.C2.A3.C4.C5.C6.D7.C8.-22ca9.)(4yxab10.11x11.112.2,3,413.1n14.-76am15.-2xy3.3答案:1.D2.A3.D4.C5.D6.D7.–18.baab9.-2110.baaab2212109811.x2-y212.(1)原式=)3(2)3)(3()3(2)3)(3(3212mmmmmmm;(2)原式=2362)3()3()3()9()3()3)(3()3()9(2xxxxxxxxxxxxx.13.原式=1)2(1)2()2)(2(12aaaaaaaaa.14.原式=xxxxx1222,当x=-3.5时,原式的值为-72.15.原式=,11111113)1()1)(1(32xxxxxxxxxxx当x=2+1时,原式的值为222.分式的乘除法-4-一、判断正误(对的打“√”,错的打“×”)(1)yxyx22=x+y()(2)(p-q)2÷(q-p)2=1()(3)48xxx2()(4))(3)(2)(9)(422nmnmnmnm()(5)bambma(m≠0)()二、请你填一填(1)2ba·(-2ab)=________.(2)ab12÷ac23=________.三、细心算一算题型1:同分母分式的加减运算1.(基本技能题)计算:xyxyyx________.4.(易错题)计算:21222933mmm.5.(技能题)计算:2211(1)aa________.14.(易错题)计算:211xxx.15.(学科综合题)先化简,再求值:26333aaaaaa,其中32a.-5-一、(1)×(2)√(3)×(4)×(5)×二、(1)-ab1(2)cb18(3)-1(4)6∶4∶3(5)107三、(1)、)(baabba(2)243x(4)解法一:当yx11=3时xyxy=3∴x-y=-3xy