DBACE(2)∵DE∥BC∴△ADE∽△ABC我们学习了哪些判定三角形相似的方法,请你用几何语言叙述。知识回顾ACBEDFEFBCDFACDEAB(3)∵∴△ABC∽△DEF(4)∵DFACDEAB∠A=∠D∴△ABC∽△DEF问题引入:观察两副三角尺,其中同样角度(30°与60°,或45°与45°)的两个三角尺大小可能不同,但它们看起来是相似的。一般地,如果两个三角形有两组对应角相等,它们一定相似吗?探究:作△ABC和△DEF,使得∠A=∠D,∠B=∠E,这时它们的第三个角满足∠C=∠F吗?分别度量这两个三角形的边长,计算,你有什么发现?EFBCDFACDEAB,,△ABC和△DEF相似吗?猜想:请证明:问题:如图∆ABC和∆A′B′C′中,∠A=∠A′,∠B=∠B′,试猜想△ABC和△A′B′C′是否相似?并证明你的猜想成立。BACA′B′C′DE证明:在AB上截取A′D=AB,画DE∥B′C′交A′C′与点E,则:△A′DE∽△A′B′C′,∠A′DE=∠B′,∵∠B=∠B′∴∠B=∠A′DE∵A′D=AB,∠A=∠A′∴△ABC≌△A′DE∴△ABC∽△A′B′C′CAA'BB'C'∵∠A=∠A',∠B=∠B'∴ΔABC∽ΔA'B'C'用数学符号表示:判定定理3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:两角对应相等,两三角形相似。ABCA’B’C’基础演练1、下列图形中两个三角形是否相似?ABCDEABCA’C’B’ABCDE(1)(2)(3)(4)例2如图,弦AB和CD相交于OO内一点P,求证:PA▪PB=PC▪PD▪O▪DPCBA证明:连接AC,DB.∵∠A和∠D都是弧CB所对的圆周角,∴∠A=∠D.同理∠C=∠B.∴△PAC∽△PDB..PBPCPDPA即PA·PB=PC·PD.引申1:如果弦AB和CD相交于圆O外一点P,结论还成立吗?DBPAC引申2:上题中A,B重合为一点时,又会有什么结论?DPAC思考:对于两个直角三角形,我们可以利用“HL”判定它们全等.那么,满足斜边的比等于一组直角边的比的两个直角三角形相似吗?已知:在Rt△ABC和Rt△A'B'C'中,∠C=90°,∠C'=90°,.CAACBAAB求证:Rt△ABC∽Rt△A'B'C'.证明:.CAACBAABk设.,CAkACBAkAB则由勾股定理,得.,2222CABACBACABBC.222222kCBCBkCBCAkBAkCBACABCBBC.CAACBAABCBBC∴Rt△ABC∽Rt△A'B'C'.ABCA′B′C′例3、求证:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。ADBC已知:在RtΔABC中,CD是斜边AB上的高。证明:∵∠A=∠A,∠ADC=∠ACB=900,∴ΔACD∽ΔABC(两角对应相等,两三角形相似)。同理ΔCBD∽ΔABC。∴ΔABC∽ΔCBD∽ΔACD。求证:ΔABCΔACD∽ΔCBD。∽求证(2)AC2=AD·ABCD2=AD·DB1、已知如图直线BE、DC交于A,∠E=∠C求证:DA·AC=AB·AEDEABC证明:∵∠E=∠C∠DAE=∠BAC∴△ABC∽△ADE∴∴DA·AC=AB·AEADABAEAC2、判断题:⑴所有的直角三角形都相似.()⑵所有的等边三角形都相似.()⑶所有的等腰直角三角形都相似.()⑷有一个角相等的两等腰三角形相似.()×√√×顶角相等底角相等顶角与底角相等基础演练BCAA'B'C'第一种情况∴ΔABC∽ΔA'B'C'顶角相等BCAA'B'C'第二种情况∴ΔABC∽ΔA'B'C'底角相等第三种情况ABCA'B'C'两三角形不相似顶角与底角相等DBCA3、如图:在Rt△ABC中,∠ABC=900,BD⊥AC于D若AB=6AD=2则AC=BD=BC=184√212√24.如图直线BE、DC交于A,AD·AC=AE·BA,求证:∠E=∠CEDBCA解:∵∠A=∠A∠ABD=∠C∴△ABD∽△ACB∴∴AB2=AD·AC∵AD=2AC=8∴AB=45、已知如图,∠ABD=∠CAD=2,AC=8,求ABABCDABADACABABCDE1已知DE∥BC且∠1=∠B,则图中共有对相似三角形。∵DE∥BC∴△ADE∽△ABC∵∠1=∠B,∠A=∠A∴△ACD∽△ABC∴△ADE∽△ACD∵DE∥BC∴∠EDC=∠DCB,又∵∠1=∠B∴△DEC∽△CDB4ABCDEABC21OCBADOCDABABCDE基本图形的形成、变化及发展过程:∽平行型斜交型......旋转平移垂直型特殊特殊平移三角形相似的判定方法有那些?方法1:定义判定方法5:两角对应相等。三个角对应相等三边对应成比例课堂小结方法6:斜边直角边对应成比例方法2:平行于三角形一边的直线。方法3:三边对应成比例。方法4:两边对应成比例且夹角相等。