and transformation formulas for q-series

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

FieldsInstituteCommunicationsVolume00,0000(Nov.20,1995)Elementaryderivationsofsummationandtransformationformulasforq-seriesGeorgeGasperDepartmentofMathematicsNorthwesternUniversityEvanston,IL60208-2730Wepresentsomeelementaryderivationsofsummationandtransformationfor-mulasforq-series,whicharedierentfrom,andinseveralcasessimplerorshorterthan,thosepresentedintheGasperandRahman[1990]\BasicHypergeometricSeriesbook(whichwewillrefertoasBHS),theBailey[1935]andSlater[1966]books,andinsomepapers;thusprovidingdeeperinsightsintothetheoryofq-series.Ourmainemphasisisonmethodsthatcanbeusedtoderiveformulas,ratherthantojustverifypreviouslyderivedorconjecturedformulas.Inx5thisapproachleadstothederivationofanewfamilyofsummationformulasforvery-well-poisedbasichypergeometricseries6+2kW5+2k;k=1;2;::::Severaloftheobservationsinthispaperwerepresented,alongwithrelatedexercises,intheauthor’sminicourseon\q-SeriesattheFieldsInstituteminiprogramon\SpecialFunctions,q-SeriesandRelatedTopics,June12{14,1995.Asiscustomary,weemploythenotationsusedinBHSfortheshiftedfactorial(a)0=1;(a)k=a(a+1)(a+k1);k=1;2;:::;theq-shiftedfactorial(a;q)0=1;(a;q)k=(1a)(1aq)(1aqk1);k=1;2;:::;(a;q)1=limk!1(a;q)k=1Yk=0(1aqk);jqj1;(a;q)=(a;q)1(aq;q)1;0jqj1;therFshypergeometricseriesrFs(a1;a2;:::;ar;b1;:::;bs;z)rFsa1;a2;:::;arb1;:::;bs;z=1Xk=0(a1)k(a2)k(ar)kk!(b1)k(bs)kzk;1991MathematicsSubjectClassication.Primary33D15,33D20,33D65;Secondary33C05,33C20.ThisworkwassupportedinpartbytheNationalScienceFoundationundergrantDMS-9401452.c0000AmericanMathematicalSociety0000-0000/00$1.00+$.25perpage12GeorgeGasperandthersbasichypergeometricseriesrs(a1;a2;:::;ar;b1;:::;bs;q;z)rsa1;a2;:::;arb1;:::;bs;q;z=1Xk=0(a1;a2;:::;ar;q)k(q;b1;:::;bs;q)kh(1)kq(k2)i1+srzk;wherek2=k(k1)=2;(a1;a2;:::;ar;q)k=(a1;q)k(a2;q)k(ar;q)kandtheprincipalvalueofqistaken.Wealsoemploythecompactnotationr+1Wr(a1;a4;a5;:::;ar+1;q;z)forthevery-well-poisedr+1rseriesr+1ra1;qa121;qa121;a4;:::;ar+1a121;a121;qa1=a4;:::;qa1=ar+1;q;z#anddenethebilateralbasichypergeometricrsseriesbyrs(z)rsa1;a2;:::;arb1;b2;:::;bs;q;z=1Xk=1(a1;a2;:::;ar;q)k(b1;b2;:::;bs;q)k(1)(sr)kq(sr)(k2)zk:Forsimplicity,unlessstatedotherwiseweshallassumethatnisanonnegativeinteger,jqj1innonterminatingq-series,andthattheparametersandvariablesarecomplexnumberssuchthattheseriesconvergeabsolutelyandanysingulari-tiesareavoided(whichusuallyleadstoisolatedconditionsontheparametersandvariablessincethesingularitiesareusuallyatpolesandatlimitsofsequencesofpoles).Foradiscussionofwhentheaboveseriesconverge,seeSections1.2and5.1inBHS(inthethirdparagraphonp.5eachoftheratiosjb1b2bsj=ja1a2arjshouldbereplacedbyjb1b2bsqj=ja1a2arj).1.Theq-binomialtheoremThesummationformula1F0(a;|;z)=1Xk=0(a)kk!zk=(1z)a;jzj1;(1:1)iscalledthebinomialtheorembecause,whena=nisanonnegativeintegerandz=x=y;itreducestothebinomialtheoremforthen-thpowerofthebinomialx+y:(x+y)n=nXk=0nkxkynk:(1:2)Since,byl’H^opital’srule,limq!11qa1q=aandhencelimq!1(qa;q)k(q;q)k=(a)kk!;Elementaryderivationsofsummationandtransformationformulasforq-series3itisnaturaltoconsiderwhathappenswhenthecoecient(a)k=k!ofzkintheseriesin(1.1)isreplacedby(qa;q)k=(q;q)kor,moregenerally,by(a;q)k=(q;q)k:Hence,letussetf(a;z)=1Xk=0(a;q)k(q;q)kzk;jzj1;(1:3)withjqj1:Thecasewhenjqj1willbeconsideredlater.Notethat,bytheWeierstrassM-test,sincejqj1theseriesin(1.3)convergesuniformlyoncompactsubsetsoftheunitdiskfz:jzj1gtoafunctionf(a;z)thatisananalyticfunctionofz(andofa)whenjzj1.Onewaytondaformulaforf(a;z)thatisageneralizationof(1.1)istorstobservethat,since1a=1aqk+aqka=(1aqk)a(1qk);f(a;z)=1+1Xk=1(a;q)k(q;q)kzk=1+1Xk=1(aq;q)k1(q;q)k[(1aqk)a(1qk)]zk=1+1Xk=1(aq;q)k(q;q)kzka1Xk=1(aq;q)k1(q;q)k1zk=f(aq;z)azf(aq;z)=(1az)f(aq;z):(1:4)Byiteratingthisfunctionalequationn1times,wendthatf(a;z)=(az;q)nf(aqn;z);whichonlettingn!1andusingqn!0yieldsf(a;z)=(az;q)1f(0;z):(1:5)Nowseta=qin(1.5)togetf(0;z)=f(q;z)(qz;q)1=(1z)1(qz;q)1=1(z;q)1;which,combinedwith(1.3)and(1.5),givestheq-binomialtheorem10(a;|;q;z)=1Xk=0(a;q)k(q;q)kzk=(az;q)1(z;q)1;jzj1;jqj1:(1:6)ThissummationformulawasderivedbyCauchy[1843],Jacobi[1846],andHeine[1847].Heine’sproofof(1.6),whichisreproducedinthebooksHeine[1878],Bailey[1935,p.66],Slater[1966,p.92],andinx1.3ofBHSalongwithsomemo-tivationfromAskey[1980],consistsofusingseriesmanipulationstoderivethefunctionalequation(1z)f(a;z)=(1az)f(a;qz);(1:7)iterating(1.7)n1times,andthenlettingn!1togetf(a;z)=(az;q)n(z;q)nf(a;qnz)=(az;q)1(z;q)1f(a;0)=(az;q)1(z;q)1;whichgives(1.6).4GeorgeGasperAnotherderivationoftheq-binomialtheoremcanbegivenbycalculatingthecoecientsck=g(k)a(0)=k!;k=0;1;2;:::;intheTaylorseriesexpansionofthefunctionga(z)=(az;q)1(z;q)1=1Xk=0ckzk;(1:8)whichisananalyticfunctionofzwhenjzj1andjqj1:Clearlyc0=ga(0)=1:Onemayshowthatc1=g0a(0)=(1a)=(1q)bytakingthelogarithmicderivativeof(az;q)1=(z;q)1andthensettingz=0:But,unfortunately,thesucceedinghigherorderderivativesofga(z)becomemoreandmorediculttocalculateforjzj1,andsooneisforcedtoabandonth

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功