初中数学难题1(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共25页)1.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣2.关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,①(m﹣1)2+(n﹣1)2≥2是否正确?;②m﹣n的取值范围为3.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1C.﹣﹣1D.++14.设直线kx+(k+1)y﹣1=0与坐标轴所构成的直角三角形的面积为Sk,则S1+S2+…+S2008=.5.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是.6.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An在x轴上,点B1、B2、…、Bn在直线y=x上,已知OA1=1,则OA2015的长为.7.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移第2页(共25页)与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.8.将函数y=﹣6x的图象l1向上平移5个单位得直线l2,则直线l2与坐标轴围成的三角形面积为.9.在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为.10.方程组的解是.11.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.12.已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是.13.已知实数x满足,则=.14.方程x2﹣|x|﹣1=0的根是.15.已知:a<0,化简=.16.=.17.如果不等式组的解集是1<x<2,求:坐标原点到直线y=ax+b距离.18.用配方法解方程:x2+x﹣2=0.19.已知方程x2+(m﹣1)x+m﹣10=0的一个根是3,求m的值及方程的另一个根.第3页(共25页)参考答案与试题解析一.选择题(共3小题)1.(2014•镇江)已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣【考点】F7:一次函数图象与系数的关系.菁优网版权所有【分析】根据直线y=ax+b(a≠0)不经过第一象限,可知a<0,b≤0,直线y=ax+b(a≠0)过点(2,﹣3),可知2a+b=﹣3,依此即可得到s的取值范围.【解答】解:∵直线y=ax+b(a≠0)不经过第一象限,∴a<0,b≤0,∵直线y=ax+b(a≠0)过点(2,﹣3),∴2a+b=﹣3,∴a=,b=﹣2a﹣3,∴s=a+2b=+2b=b﹣≤﹣,s=a+2b=a+2(﹣2a﹣3)=﹣3a﹣6>﹣6,即s的取值范围是﹣6<s≤﹣.故选:B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n第4页(共25页)≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个【考点】AB:根与系数的关系;AA:根的判别式.菁优网版权所有【专题】16:压轴题.【分析】①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.【解答】解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n>0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,∵4m2﹣8n≥0,4n2﹣8m≥0,∴m2﹣2n≥0,n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③由根与系数关系可得2m﹣2n=y1y2+y1+y2=(y1+1)(y2+1)﹣1,由y1、y2均为负整数,故(y1+1)•(y2+1)≥0,故2m﹣2n≥﹣1,同理可得:2n﹣2m=x1x2+x1+x2=(x1+1)(x2+1)﹣1,得2n﹣2m≥﹣1,即2m﹣2n≤1,故③正确.故选:D.【点评】本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,有一定的难度,注意总结.3.(2016•邯郸校级自主招生)设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1C.﹣﹣1D.++1第5页(共25页)【考点】7A:二次根式的化简求值.菁优网版权所有【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后代、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣=﹣===,∴a的小数部分=﹣1;∵﹣==﹣==,∴b的小数部分=﹣2,∴﹣====.故选B.【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.二.填空题(共13小题)4.(2012•麻城市校级自主招生)设直线kx+(k+1)y﹣1=0与坐标轴所构成的直第6页(共25页)角三角形的面积为Sk,则S1+S2+…+S2008=.【考点】F5:一次函数的性质.菁优网版权所有【专题】16:压轴题;2A:规律型.【分析】先依次计算出S1、S2等的面积,再依据规律求解.【解答】解:∵kx+(k+1)y﹣1=0∴当x=0时,y=;当y=0时,x=∴Sk=××=,根据公式可知,S1+S2+…+S2008=[﹣+﹣+…+﹣]=(1﹣)=.【点评】结合题意依次计算出S1、S2等的面积,再总结规律,易求解.5.(2012•北海)如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是(,﹣).【考点】F5:一次函数的性质;J4:垂线段最短.菁优网版权所有【专题】11:计算题;16:压轴题.【分析】作AB′⊥BB′,B′即为当线段AB最短时B点坐标,求出AB′的解析式,与BB′组成方程组,求出其交点坐标即可.【解答】解:设AB′解析式为y=kx+b,∵AB′⊥BB′,BB′解析式为y=2x﹣4,k1×k2=﹣1,∴2k=﹣1,k=﹣,于是函数解析式为y=﹣x+b,第7页(共25页)将A(﹣1,0)代入y=﹣x+b得,+b=0,b=﹣,则函数解析式为y=﹣x﹣,将两函数解析式组成方程组得,,解得,故B点坐标为(,﹣).故答案为(,﹣).【点评】本题考查了一次函数的性质和垂线段最短,找到B′点是解题的关键,同时要熟悉待定系数法求函数解析式.6.(2015•衡阳)如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An在x轴上,点B1、B2、…、Bn在直线y=x上,已知OA1=1,则OA2015的长为22014.【考点】F8:一次函数图象上点的坐标特征;KW:等腰直角三角形.菁优网版权所有【专题】16:压轴题;2A:规律型.第8页(共25页)【分析】根据规律得出OA1=1,OA2=2,OA3=4,OA4=8,所以可得OAn=2n﹣1,进而解答即可.【解答】解:因为OA1=1,∴OA2=2,OA3=4,OA4=8,由此得出OAn=2n﹣1,所以OA2015=22014,故答案为:22014.【点评】此题考查一次函数图象上点的坐标,关键是根据规律得出OAn=2n﹣1进行解答.7.(2013•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】F9:一次函数图象与几何变换.菁优网版权所有【专题】16:压轴题.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,第9页(共25页)∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.【点评】本题考查了一次函数图象与几何变换,要注意利用一次函数的特点,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.(2010•黄石)将函数y=﹣6x的图象l1向上平移5个单位得直线l2,则直线l2与坐标轴围成的三角形面积为.【考点】F9:一次函数图象与几何变换.菁优网版权所有【专题】11:计算题;16:压轴题.【分析】易得l2的解析式,那么常数项为y轴上的截距,让纵坐标为0可得与x轴的交点,围成三角形的面积=×x轴交点的绝对值×y轴交点的绝对值.【解答】解:由题意得l2的解析式为:y=﹣6x+5,∴与y轴的交点为(0,5),与x轴的交点为(,0),∴所求三角形的面积=×5×=.第10页(共25页)【点评】考查的知识点为:一次函数向上平移,常数项加相应的单位,注意熟练掌握直线与坐标轴围成三角形的面积=×x轴交点的绝对值×y轴交点的绝对值.9.(2015•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为≤m≤1.【考点】FF:两条直线相交或平行问题.菁优网版权所有【专题】11:计算题;16:压轴题.【分析】先求出直线y=3与直线y=2x+1的交点为(1,3),再分类讨论:当点B在点A的右侧,则m≤1≤3m﹣1,当点B在点A的左侧,则3m﹣1≤1≤m,然后分别解关于m的不等式组即可.【解答】解:当y=3时,2x+1=3,解得x=1,所以直线y=3与直线y=2x+1的交点为(1,3),当点B在点A的右侧,则m≤1≤3m﹣1,解得≤m≤1;当点B在点A的左侧,则3m﹣1≤1≤m,无解,所以m的取值范围为≤m≤1.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.10.(2012•徐汇区校级模拟)方程组的解是.【考点】AF:高次方程.菁优网版权所有【专题】11:计算题;16:压轴题.【分析】根据2x﹣y=1,用x表示出y,然后代入第一个方程,得出x的值后代入,可得出y的值.【解答】解:由2x﹣y=1,可得:y=2x﹣1,代入第一个方程可得:3x2﹣(2x﹣1)2﹣(2x﹣1)+3=0,解得:x1=3,x2=﹣1,第11页(共25页)当x=3时,y=5;当x=﹣1时,y=﹣3;故方程组的根为:,.故答案为:,.【点评】解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.11.(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于4.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.菁优网版权所有【专题】16

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功