A. Parallelization of Particle Methods on the Sphe

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ParallelizationofParticleMethodsontheSphereOmerEgeciogluandAshokSrinivasanDepartmentofComputerScienceUniversityofCaliforniaSantaBarbara,CA93106fomer,ashokg@cs.ucsb.eduAbstractWeconsiderdatastructuresandalgorithmsforecientparallelizationofparticlemethodswhenthedomainisthesurfaceofasphere.Suchapplicationstypicallyarisewhendealingwithdirectionaldata.Weproposeadomaindecompositionschemebasedongeometricpartitioning,thatprovidesdomainssuitableforecientimplementationofrequisiteoperationsthatareper-formedonthedatainparallel.Thealgorithmhastheadvantageofbeingfastenoughtobeapplieddynamically,andatthesametimeprovidesgoodpartitions,comparableinqualitytothoseproducedbymultilevelgraphpartitioningschemes.1IntroductionParticlemethodsarewidelyusedinseveralapplications[1,5,4,3].Thesetypicallyinvolveasetofparticlesrepresentedaspointsinsomespace,andafunctionthatdescribestheinteractionbetweenpairsofparticles.Foreachparticle,oneindependentlysumstheinteractionbetweenitandallotherparticles,andanewstateforeachparticleisthencomputed.Thisnewstatetypicallyisanewpositionandvelocity,andthecalculationsarerepeatedseveraltimestoobservetheevolutionofthesystem.Thisleadstoanirregularcomputationalprobleminwhichthesetofparticleswhichinteractswithanygivenparticlechangeswithtimeinanunpredictablemanner.Furthermore,inapplicationsinvolvingdirectionaldatasuchascomplexuidowproblems[21,14],thenaturaldomainofrepresentationistheunitsphere.Inaparallelimplementation,particlesareassignedtoprocessorsbyrstbreakingthedomainintosubdomains,andthenmappingthesesubdomainstodierentprocessors.Eachprocessorproceedstocomputetheinteractionsofalltheparticlesinthesystemwiththeparticlesinitssubdomain.Theinteractionswithparticlesthatlieoutsideitssubdomainrequireaprocessortoobtainthestatesofthoseparticlesfromotherprocessors.Wecalltheparticlesinthesubdomainofaprocessorthepointsownedbytheprocessor.Thepointsownedbyagivenprocessorthatareneededbyotherprocessorsaresharedpoints.InmanyapplicationssuchasmoleculardynamicsandSmoothedParticleHydrodynamicsbasedmethods,theinteractingforcesbetweentheparticlesareshortrangeandtheeectofparticlesthatarefartherawaythanacertaincut-odistancecanbeignored[4,3].Inordertofurthermitigatehighcommunicationcosts,oneusuallytriestooverlapcomputationwithcommunication.Hence,processorsrstsendtheirshareddatatotheprocessorsthatneedthem,andfollowingthisperformtheirlocalcomputations.Subsequently,theyreceivetheshareddatatheyThistechnicalreportdiscussesparallelizationofparticlemethodsonthesphere.Itconsistsoftwoparts(i)Domaindecomposition,and(ii)datastructurestofacilitatesuchcomputations.TherstpartappearsintheProceedingsoftheThirdInternationalWorkshoponParallelAlgorithmsforIrregularlyStructuredProblems(IRREGULAR’96),heldinSantaBarbara,California,August19-21,1996.Itisreproducedhereforcompleteness.11.DomainDecomposition.2.Mapdomainstoprocessors.3.Startloop(a)Determinesharedpoints.(b)Sendsharedpointstoprocessorsthatneedthem.(c)Computeusinginteriordata.(d)Receiveshareddataneededfromotherprocessors.(e)Computeusingreceiveddataandupdatestate.(f)Updatedomaindata.EndloopFigure1:Outlineofageneralparallelparticlemethodcalculation.themselvesneedandperformtheirremainingcomputations,andupdatethestatesofthepointsintheirsubdomain.Someupdatingofthedomainscanalsobedoneatthisstage.Usuallyafulldomaindecompositionisnotperformedattheendofeachiterationsincethecostofthedecompositioncanbeprohibitive.ThebasicschemeofsuchcalculationsisoutlinedinFigure1.Ecientparallelizationrequiresthatwechoosesubdomainsforeachprocessorinsuchawaythatonlyfewparticlesoutsidethesubdomaininteractwithparticleswithinthesubdomain.Itisalsonecessarytoecientlydeterminethesetofsharedparticlesateachprocessor.Animportantaspectofthecomputationsistoperformeectivedynamicrangesearchingsothatonecomputesinteractionswithonlythoseparticlesthatarewithinthecut-odistanceoftheshortrangeinteractions.Theoutlineofthispaperisasfollows.Sect.2describesgraph-theoreticalandgeometricdo-maindecompositionstrategiesastheyapplytoparticlemethodsonthesphere.ThealgorithmwepresentinSect.3isessentiallyageometricpartitioningbasedonOrthogonalRecursiveBisection[2].However,wetakeadvantageofthegeometryofthespheretoproducepartitionswithqual-itycomparabletosophisticatedmethodssuchasspectralpartitioning.ExperimentalresultsandcomparisonswithotherpopularschemesavailableinChaco,version2.0[9]andMetis,version2.0.3[11]arepresentedinSect.4.Theseexperimentsshowthatouralgorithmisanorderofmagnitudefasterthaneventherelativelyfastinertialmethodforlargeproblemsizes,anddemonstratethehighqualityofthepartitionsobtained.InSection5,wedescribevarioussetsandtheoperationsthatareperformedonthem,whichabstracttheessentialfeaturesofthecomputationsinvolved,andalsodescribeourimplementationstrategy.Weshowhowourdomaindecompositionstrategyfacilitatesecientimplementationofotheroperationsonthedata.ConclusionsaregiveninSect.6.2DomainDecompositionDomaindecompositionhasbeenwidelystudied[9,10,11,12,13]andseveraltypesofmethodsforitssolutionhavebeenproposed:graph-theoreticalandg

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功