Error Bounds and Superlinear Convergence Analysis

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

NonlinearOptimizationandApplications2,pp.1-000G.DiPilloandF.Giannessi,Editorsc1998KluwerAcademicPublishersB.V.ErrorBoundsandSuperlinearConvergenceAnalysisofSomeNewton-TypeMethodsinOptimizationPaulTseng(tseng@math.washington.edu)DepartmentofMathematics,Box354350UniversityofWashington,Seattle,WA98195-4350,U.S.A.AbstractWeshowthat,forsomeNewton-typemethodssuchasprimal-dualinterior-pointpathfollowingmethodsandChen-Mangasariansmoothingmethods,lo-calsuperlinearconvergencecanbeshownwithoutassumingthesolutionsareisolated.Theanalysisisbasedonlocalerrorboundsonthedistancefromtheiteratestothesolutionset.Keywords:Errorbound,superlinearconvergence,Newtonmethod,continua-tion/smoothingmethod,interior-pointmethod.ThisresearchissupportedbyNationalScienceFoundationGrantCCR-9731273.1IntroductionWeconsiderthecomplementarityproblem(CP)ofndingan(x;y)2nnsatis-fyingx0;y0;xTy=0;F(x)y=0;(1)whereF=(F1;:::;Fn)Tisacontinuousmappingfromn(orn+)tonthatiscontinuouslydierentiableonn(orn++)[10,12,26].WedenotebySthesetofofsolutionsofCP,i.e.,S:=f(x;y)2nn:(x;y)satisfy(1)g,whichweassumeisnonempty.AnimportantspecialcaseiswhenFisane,givingrisetoalinearCP(LCP)[11,20].Anotherimportantspecialcaseiswhenx=uv;F(x)=rf0(u)+Pmi=1virfi(u)fi(u)mi=1#;1wheref0;f1;:::;fmaretwicecontinuouslydierentiablefunctionsdenedonl(orl++),m0;l1.Inthiscase,(1)isequivalenttotheKarush-Kuhn-Tuckerconditionassociatedwiththenonlinearprogramminimizef0(u)subjecttou0;fi(u)0;i=1;:::;m:Moreover,iff0;f1;:::;fmareconvex(respectively,quadratic)ontheirrespectivedo-mains,thenthisFismonotone(respectively,ane)andcontinuousonl+m+.AmongthevariousapproachesforsolvingCP,onethathasreceivedmuchat-tentionconcernsNewton-typemethodsbasedoncontinuation/smoothing.Inthisapproach,onechoosesacontinuouslydierentiablemappingHfrom2n(or2n++)to2n,parameterizedby2++,havingthepropertythatH(x;y)!0;(x;y;)!(x;y;0)=)(x;y)2S:Then,fromaninitialandaninitialguess(x;y)ofthesolution,(x;y)isupdatedbymovingitalongaNewtondirectionfortheequatonH(x;y)=0andafterwardsisdecreased.Terminationoccurswhenissucientlysmall.OnechoiceoftheNewtondirectionisthesolution(u;v)22noftheNewtonequationH0(x;y)uv+H(x;y)=0;(2)whichisusefulinachievingglobalconvergence.Asecondchoice,usefulforpracticaleciencyaswellasachievinglocalsuperlinearconvergence,isthesolution(u;v)ofthemodiedNewtonequationH0(x;y)uv+H0(x;y)=0;(3)whereH0(x;y)=lim!0H(x;y),assumingthispoint-wiselimitexists.Thetwodirections(2)and(3)maybeusedinseries(i.e.,use(2)toupdate(x;y)andthenuse(3)tofurtherupdate(x;y))orinparallel(i.e.,useaconvexcombinationof(2)and(3)toupdate(x;y)).Primal-dualinterior-pointpathfollowingmethodscorrespondtoHgivenbyH(x;y)=(xiyi)ni=1F(x)y;x0;y0:(4)Theuseofbothdirections(2)and(3)giverisetotheso-calledpredictor-correctormethods.Theliteratureonsuchmethodsisvastand,inthecontextofCP,include[15,18,19,20,21,25,28,29,30,31,33,34,39,42].ThesmoothingmethodofChenandMangasarian[7,8]anditsextensions[3,4,6,9,13,40]correspondtoHgivenbyH(x;y)=(xig((xiyi)=))ni=1F(x)y;(5)2whereg:!isanyconvexcontinuouslydierentiablefunctionwiththepropertiesthatg()!0andg()!0as!1and0g0()1forall2.WewilldenotetheclassofsuchfunctionsgbyCM.[Inthecasewheregistwicecontinuouslydierentiable,g(=)maybewrittenastheintegralR1R11g00(=)dd,whereg00isinterpretedasaprobabilitydensityfunction.Thisistheformpresentedin[8]andusedbyothers.Theform(5)isfrom[40]andiseasiertouseforouranalysis.]ExamplesofthesmoothingfunctiongincludeoneproposedindependentlybyChenandHarker[5],Kanzow[16],andSmale[32](see[1,2,14,43]andreferencesthereinformethodsbasedonthisg):g()=(p2+4+)=2;(6)andoneobtainedbyintegratingthesigmoidfunction7!1=(1+e)usedinneuralnetworks[7,8]:g()=ln(e+1):(7)See[7,8]forotherexamplesofg.Anewexampleofgthatisusefulforouranalysisisg()=((1=2)+2(1=2)=if0(1=2)+2(1=2+)=+if0;(8)with0.ForHgivenby(5),itiseasilyseenthatH0(x;y)=(minfx;yg;F(x)y).OurfocusisonthelocalsuperlinearconvergenceanalysisoftheprecedingNewton-typemethodsand,forsimplicity,wewillrestrictourattentiontoHgivenby(4)and(5).Inthetypicalsuperlinearconvergenceanalysis,thesolutionsneedtobeisolated.Anexceptiontothisistheprimal-dualinterior-pointpredictor-correctormethods,forwhichlocalsuperlinearconvergencecanbeshownforlinearprogramsand,moregenerally,monotoneLCPhavingastrictlycomplementarysolution(see[37,41]andreferencestherein).Furtherextensionsofthisanalysistomonotone(nonlinear)CPandvariationalinequalitieshavebeenobtainedbySunandZhao[34],assuming(inadditiontoexistenceofstrictlycomplementarysolutionandsomemildassumptions)constantrangespaceandcolumnrankofcertainmatricesbasedonF0(x)[34,Assumptions3-4].TherelatedanalysisofRalphandWright[29,30]allowsfornonuniquemultipliers,butwhenspecializedCP,itstillrequiresuniquenessofsolution.MonteiroandZhou[24]improvedtheanalysisof[29]forthecaseoflinearlyconstrainedconvexprogram,assumingconstantnullspaceofcertainmatricesbasedonF0(x).Thisassumptionissimilarto[34,Assumptions3-4]andallowsformultipleprimalsolutions

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功