2020年1月30日表观遗传学(epigenetics)生命科学学院沈文飚242020年1月30日52020年1月30日5发展历史2000多年前,古希腊哲学家亚里士多德在《OntheGenerationofAnimals》一书中首先提出后生理论(thetheoryofepigenesis),它相对于先成论,新器官的发育由未分化的团块逐渐形成的。2020年1月30日62020年1月30日6发展历史1939年,生物学家WaddingtonCH首先在《现代遗传学导论》中提出了epihenetics这一术语,并于1942年定义表观遗传学为“生物学的分支,研究基因与决定表型的基因产物之间的因果关系”。2020年1月30日72020年1月30日7发展历史1975年,HollidyR对表观遗传学进行了较为准确的描述。他认为表观遗传学不仅在发育过程,而且应在成体阶段研究可遗传的基因表达改变,这些信息能经过有丝分裂和减数分裂在细胞和个体世代间传递,而不借助于DNA序列的改变,也就是说表观遗传是非DNA序列差异的核遗传。2020年1月30日8概述表观遗传学研究不涉及DNA序列改变的基因表达和调控的可遗传变化的,或者说是研究从基因演绎为表型的过程和机制的一门新兴的遗传学分支。表观遗传所谓表观遗传就是不基于DNA差异的核酸遗传。即细胞分裂过程中,DNA序列不变的前提下,全基因组的基因表达调控所决定的表型遗传,涉及染色质重编程、整体的基因表达调控(如隔离子,增强子,弱化子,DNA甲基化,组蛋白修饰等功能),及基因型对表型的决定作用。2020年1月30日82020年1月30日9概述DefinitionofEpigeneticsAnychangesingeneexpressionresultingfromeitheraDNAandchromatinmodificationorresultingfromapostpost-transcriptionalmechanism.However,itdoesnotreflectadifferenceintheDNAcode。Aunifyingdefinitionofepigenetics:(AdrianBird,nature,2007)thestructuraladaptationofchromosomalregionssoastoregister,signalorperpetuatealteredactivitystates.Thisdefinitionisinclusiveofchromosomalmarks,becausetransientmodificationsassociatedwithbothDNArepairorcell-cyclephasesandstablechangesmaintainedacrossmultiplecellgenerationsqualify.2020年1月30日92020年1月30日10概述表观遗传学的特点:可遗传的,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世代间遗传;可逆性的基因表达调节,也有较少的学者描述为基因活性或功能的改变;没有DNA序列的改变或不能用DNA序列变化来解释。2020年1月30日102020年1月30日11概述2020年1月30日112020年1月30日12概述2020年1月30日12遗传与表观遗传2020年1月30日13概述2020年1月30日13真核生物全部遗传信息遗传密码组蛋白密码?密码基因组DNA序列组蛋白氨基端修饰?2020年1月30日14概述2020年1月30日14DNA与染色质2020年1月30日15概述2020年1月30日相同的基因型不同的表现型基因表达模式152020年1月30日16概述基因表达模式决定细胞类型的不是基因本身,而是基因表达模式,通过细胞分裂来传递和稳定地维持具有组织和细胞特异性的基因表达模式对于整个机体的结构和功能协调是至关重要的。基因表达模式在细胞世代之间的可遗传性并不依赖细胞内DNA的序列信息。基因表达模式有表观遗传修饰决定。2020年1月30日18概述表观遗传学的研究内容:基因转录后的调控基因组中非编码RNA微小RNA(miRNA)反义RNA内含子、核糖开关等基因选择性转录表达的调控DNA甲基化基因印记组蛋白共价修饰染色质重塑2020年1月30日18Quiz,J.nature.20062020年1月30日202020年1月30日表观遗传学机制DNA甲基化120组蛋白修饰2染色质重塑3RNA调控4DNA甲基化12020年1月30日21一、DNA甲基化2020年1月30日DNA甲基化(DNAmethylation)是研究得最清楚、也是最重要的表观遗传修饰形式,主要是基因组DNA上的胞嘧啶第5位碳原子和甲基间的共价结合,胞嘧啶由此被修饰为5甲基胞嘧啶(5-methylcytosine,5mC)。DNMT1SAM胞嘧啶5-甲基胞嘧啶胞嘧啶甲基化反应21S-腺苷甲硫氨酸以基因型为a/a的母鼠及其孕育的基因型为AVY/a的仔鼠作实验对象。孕鼠分为两组,试验组孕鼠除喂以标准饲料外,从受孕前两周起还增加富含甲基的叶酸、乙酰胆碱等补充饲料,而对照组孕鼠只喂饲标准饲料。结果实验组孕鼠产下的仔鼠大多数在身体的不同部位出现了大小不等的棕色斑块,甚至出现了以棕褐色为主要毛色的小鼠。而对照组孕鼠的仔鼠大多数为黄色。分析表明喂以富甲基饲料的孕鼠所产仔鼠的IAP所含CpG岛的甲基化平均水平远高于对照组,转录调控区的高甲基化使原该呈异位表达的基因趋于沉默,毛色也趋于棕褐色。2020年1月30日23一、DNA甲基化2020年1月30日232020年1月30日24一、DNA甲基化哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70%的5mC存在于CpG二连核苷。在结构基因的5’端调控区域,CpG二连核苷常常以成簇串联形式排列,这种富含CpG二连核苷的区域称为CpG岛(CpGislands),其大小为500-1000bp,约56%的编码基因含该结构。基因调控元件(如启动子)所含CpG岛中的5mC会阻碍转录因子复合体与DNA的结合。DNA甲基化一般与基因沉默相关联;非甲基化一般与基因的活化相关联;而去甲基化往往与一个沉默基因的重新激活相关联。2020年1月30日242020年1月30日25一、DNA甲基化2020年1月30日255’3’CpG岛主要处于基因5’端调控区域。启动子区域的CpG岛一般是非甲基化状态的,其非甲基化状态对相关基因的转录是必须的。目前认为基因调控元件(如启动子)的CpG岛中发生5mC修饰会在空间上阻碍转录因子复合物与DNA的结合。因而DNA甲基化一般与基因沉默相关联。Rb基因CpG频率2020年1月30日26一、DNA甲基化2020年1月30日262020年1月30日27一、DNA甲基化2020年1月30日27DNA甲基化状态的遗传和保持:DNA复制后,新合成链在DNMT1的作用下,以旧链为模板进行甲基化。(缺乏严格的精确性,95%)甲基化并非基因沉默的原因而是基因沉默的结果,其以某种机制识别沉默基因,后进行甲基化。DNA全新甲基化。引发因素可能包括:DNA本身的序列、成分和次级结构。RNA根据序列同源性可能靶定的区域。特定染色质蛋白、组蛋白修饰或相当有序的染色质结构。2020年1月30日28DNA去甲基化主动去甲基化复制相关的去甲基化在复制过程中维持甲基化酶活性被关闭或维持甲基化酶活性被抵制。一、DNA甲基化2020年1月30日282020年1月30日29一、DNA甲基化2020年1月30日29复制相关的DNA去甲基化2020年1月30日30ManelEsteller,nature,20072020年1月30日31一、DNA甲基化2020年1月30日31DNA甲基化状态的保持DNA主动去甲基化DNA全新甲基化2020年1月30日32二、组蛋白修饰2020年1月30日322020年1月30日33二、组蛋白修饰组蛋白修饰是表观遗传研究的重要内容。组蛋白的N端是不稳定的、无一定组织的亚单位,其延伸至核小体以外,会受到不同的化学修饰,这种修饰往往与基因的表达调控密切相关。被组蛋白覆盖的基因如果要表达,首先要改变组蛋白的修饰状态,使其与DNA的结合由紧变松,这样靶基因才能与转录复合物相互作用。因此,组蛋白是重要的染色体结构维持单元和基因表达的负控制因子。2020年1月30日332020年1月30日34二、组蛋白修饰2020年1月30日342020年1月30日35二、组蛋白修饰组蛋白修饰种类乙酰化--一般与活化的染色质构型相关联,乙酰化修饰大多发生在H3、H4的Lys残基上。甲基化--发生在H3、H4的Lys和Asp残基上,可以与基因抑制有关,也可以与基因的激活相关,这往往取决于被修饰的位置和程度。磷酸化--发生与Ser残基,一般与基因活化相关。泛素化--一般是C端Lys修饰,启动基因表达。SUMO(一种类泛素蛋白)化--可稳定异染色质。其他修饰2020年1月30日362020年1月30日36二、组蛋白修饰BryanM.Turner,naturecellbiology,2007组蛋白中被修饰氨基酸的种类、位置和修饰类型被称为组蛋白密码(histonecode),遗传密码的表观遗传学延伸,决定了基因表达调控的状态,并且可遗传。2020年1月30日37二、组蛋白修饰2020年1月30日372020年1月30日38三、染色质重塑染色质重塑(chromatinremodeling)是一个重要的表观遗传学机制。染色质重塑是由染色质重塑复合物介导的一系列以染色质上核小体变化为基本特征的生物学过程。组蛋白尾巴的化学修饰(乙酰化、甲基化及磷酸化等)可以改变染色质结构,从而影响邻近基因的活性。2020年1月30日39三、染色质重塑核小体2020年1月30日40三、染色质重塑核小体定位是核小体在DNA上特异性定位的现象。核小体核心DNA并不是随机的,其具备一定的定向特性。核小体定位机制:内在定位机制:每个核小体被定位于特定的DNA片断。外在定位机制:内在定位结束后,核小体以确定的长度特性重复出现。核小体定位的意义:核小体定位是DNA正确包装的条件。核小体定位影响染色质功能。2020年1月30日41三、染色质重塑重塑因子调节基因表达机制的假设有两种:机制1:一个转录因子独立地与核小体DNA结合(DNA可以是核小体或核小体之间的),然后,这个转录因子再结合一个重塑因子,导致附近核小体结构发生稳定性的变化,又导致其他转录因子的结合,这是一个串联反应的过程;(重建)机制2:由重塑因子首先独立地与核小体结合,不改变其结构,但使其松动并发生滑动,这将导致转录因子的结合,从而使新形成的无核小体的区域稳定。(滑动)2020年1月30日42三、染色质重塑染色质修饰与重塑(共价修饰型与ATP依赖型)2020年1月30日43三、染色质重塑(A)结合(B)松链(C)重塑八聚体转移八聚体滑动+ATP重塑复合物ATP依赖的染色质重构机制2020年1月30日44三、染色质重塑边界子(boundaryelements):相邻基因间的物理隔离元件。也可称为隔离子(insulatorelements)。边界子和隔离子的隔离功能:封阻末梢增强子对启动子的作用。防止染色质位置效应(CPE)。由边界子所确定的染色质片断是基因组调节的基本单位,其构成染色质的功能与或区室,这即是染色质区室化。2020年1月30日45四、RNA调控1995,RNAi现象首次在线虫中发现。1998,RNAi概念的首次提出。1999,RNAi作用机制模型的提出。在线虫、果蝇、拟南芥及斑马鱼等多种生物内发现RNAi现象。2001,RNAi技术成功诱导培养的哺乳动物细胞基因沉默现象。RNAi技术被《Science》评为2001年度的十大