初中数学三角函数难题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共13页)1.已知等边△ABC内接于⊙O,点D是⊙O上任意一点,则sin∠ADB的值为()A.1B.C.D.2.在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,将△BCD沿着直线BD折叠,点C落在点C1处,如果AB=5,AC=4,那么sin∠ADC1的值是.3.观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)=.4.有四个命题:①若45°<a<90°,则sina>cosa;②已知两边及其中一边的对角能作出唯一一个三角形;③已知x1,x2是关于x的方程2x2+px+p+1=0的两根,则x1+x2+x1x2的值是负数;④某细菌每半小时分裂一次(每个分裂为两个),则经过2小时它由1个分裂为16个.其中正确命题的序号是(注:把所有正确命题的序号都填上).5.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.第2页(共13页)6.在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA=.7.如果α是锐角,且sin2α十cos235°=1,那么α=度.8.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣;因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣;猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于.9.在△ABC中,已知sinA=,cosB=,则∠C=.10.在△ABC中,(tanC﹣1)2+|﹣2cosB|=0,则∠A=.11.若α、β均为锐角,则以下有4个命题:①若sinα<sinβ,则α<β;②若α+β=90°,则sinα=cosβ;③存在一个角α,使sinα=1.02;④tanα=.其中正确命题的序号是.(多填或错填得0分,少填的酌情给分)12.附加题:如图,在Rt△ABC中,BC、AC、AB三边的长分别为a、b、c,则sinA=,cosA=,tanA=.我们不难发现:sin260°+cos260°=1,…试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.13.对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)第3页(共13页)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.14.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.15.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.16.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号第4页(共13页)1.已知等边△ABC内接于⊙O,点D是⊙O上任意一点,则sin∠ADB的值为()A.1B.C.D.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ADB与∠ACB是同弧所对的圆周角,∴∠ADB=60°.∴sin∠ADB=sin60°=.故选C.2.(2013•崇明县一模)在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,将△BCD沿着直线BD折叠,点C落在点C1处,如果AB=5,AC=4,那么sin∠ADC1的值是.【解答】解:∵∠C=90°,BD是△ABC的角平分线,∵将△BCD沿着直线BD折叠,∴C1点恰好在斜边AB上,∴∠DC1A=90°,∴∠ADC1=∠ABC,∵AB=5,AC=4,∴sin∠ADC1=.故答案为:.3.(2012•衡阳)观察下列等式第5页(共13页)①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)=1.【解答】解:由题意得,sin230°+sin2(90°﹣30°)=1;sin245°+sin2(90°﹣45°)=1;sin260°+sin2(90°﹣60°)=1;故可得sin2a+sin2(90°﹣a)=1.故答案为:1.4.(2010•防城港)有四个命题:①若45°<a<90°,则sina>cosa;②已知两边及其中一边的对角能作出唯一一个三角形;③已知x1,x2是关于x的方程2x2+px+p+1=0的两根,则x1+x2+x1x2的值是负数;④某细菌每半小时分裂一次(每个分裂为两个),则经过2小时它由1个分裂为16个.其中正确命题的序号是①④(注:把所有正确命题的序号都填上).【解答】解:①因为sin45°=cos45°=,再结合锐角三角函数的变化规律,故此选项正确;②不一定能够判定两个三角形全等,故此选项错误;③根据根与系数的关系,得x1+x2=﹣,x1x2=.∴x1+x2+x1x2=,是正数.故此选项错误;④根据题意,得2小时它由1个分裂24个,即16个,故此选项正确.故正确的有①④.5.(2011•莆田)如图,一束光线从点A(3,3)出发,经过y轴上点C反射后第6页(共13页)经过点B(1,0),则光线从点A到点B经过的路径长为5.【解答】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=4.∴AB′=AC+CB′=AC+CB=5.即光线从点A到点B经过的路径长为5.6.(2007•眉山)在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA=.【解答】解:∵Rt△ABC中,∠C=90°,BC:AC=3:4,∴设BC=3x,则AC=4x,∴AB=5x,∴cosA===.7.(2002•西城区)如果α是锐角,且sin2α十cos235°=1,那么α=35度.第7页(共13页)【解答】解:∵sin2α十cos235°=1,∴α=35°.8.(2010•湛江)因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣;因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣;猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于﹣.【解答】解:∵当a为锐角时,有cos(180°+a)=﹣cosa,∴cos240°=cos(180°+60°)=﹣cos60°=﹣.9.(2013•邵阳模拟)在△ABC中,已知sinA=,cosB=,则∠C=105°.【解答】解:∵sinA=,cosB=,∴∠A=30°,∠B=45°,∴∠C=180°﹣30°﹣45°=105°.故答案为:105°.10.(2012•海南模拟)在△ABC中,(tanC﹣1)2+|﹣2cosB|=0,则∠A=105°.【解答】解:∵(tanC﹣1)2+|﹣2cosB|=0,∴tanC﹣1=0,﹣2cosB=0,即tanC=1,cosB=,又∵B、C在同一个三角形中,∴B=30°,C=45°,∴A=180°﹣30°﹣45°=105°.故答案是105°.11.(2011•九江模拟)若α、β均为锐角,则以下有4个命题:①若sinα<sinβ,则α<β;②若α+β=90°,则sinα=cosβ;③存在一个角α,使sinα=1.02;④tanα=.其中正确命题的序号是①②④.(多填或错填得0分,少填的酌情给分)第8页(共13页)【解答】解:∵sinα<sinβ,则α<β;故此选项正确;②若α+β=90°,则sinα=cos(90°﹣α)=cosβ,∴故此选项正确;③存在一个角α,sinα=,∴sinα≤1,∴sinα=1.02,故此选项错误;④tanα=.根据对应边之间关系得出,故此选项正确.故答案为:①②④.12.(2008•庆阳)附加题:如图,在Rt△ABC中,BC、AC、AB三边的长分别为a、b、c,则sinA=,cosA=,tanA=.我们不难发现:sin260°+cos260°=1,…试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.【解答】解:存在的一般关系有:(1)sin2A+cos2A=1;(2)tanA=.证明:(1)∵sinA=,cosA=,a2+b2=c2,∴sin2A+cos2A==1.(2)∵sinA=,cosA=,∴tanA==,第9页(共13页)=.13.(2013•大庆)对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.【解答】解:(1)由题意得,sin120°=sin(180°﹣120°)=sin60°=,cos120°=﹣cos(180°﹣120°)=﹣cos60°=﹣,sin150°=sin(180°﹣150°)=sin30°=;(2)∵三角形的三个内角的比是1:1:4,∴三个内角分别为30°,30°,120°,①当∠A=30°,∠B=120°时,方程的两根为,﹣,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验﹣是方程4x2﹣1=0的根,∴m=0符合题意;②当∠A=120°,∠B=30°时,两根为,,不符合题意;③当∠A=30°,∠B=30°时,两根为,,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验不是方程4x2﹣1=0的根.综上所述:m=0,∠A=30°,∠B=120°.14.(2010•密云县)如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运第10页(共13页)动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.【解答】解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,第11页(共13页)∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功