专题学习----几何证明中常见的“添辅助线”方法----“周长问题”的转化连结目的:构造全等三角形或等腰三角形适用情况:图中已经存在两个点—A和B语言描述:连结AB注意点:双添---在图形上添虚线在证明过程中描述添法连结典例1:如图,AB=AD,BC=DC,求证:∠B=∠D.ACBD1.连结AC构造全等三角形2.连结BD构造两个等腰三角形连结典例2:如图,AB=AE,BC=ED,∠B=∠E,AM⊥CD,求证:点M是CD的中点.ACBD连结AC、AD构造全等三角形EM连结典例3:如图,AB=AC,BD=CD,M、N分别是BD、CD的中点,求证:∠AMB=∠ANCACBD连结AD构造全等三角形NM连结典例4:如图,AB与CD交于O,且AB=CD,AD=BC,OB=5cm,求OD的长.ACBD连结BD构造全等三角形O目的:构造直角三角形,得到距离相等适用情况:图中已经存在一个点A和一条线MN语言描述:过点A作AH⊥MN注意点:双添---在图形上添虚线在证明过程中描述添法角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例1:如图,△ABC中,∠C=90o,BC=10,BD=6,AD平分∠BAC,求点D到AB的距离.ACD过点D作DE⊥AB构造了:全等的直角三角形且距离相等BE角平分线上点向两边作垂线段典例2:如图,△ABC中,∠C=90o,AC=BC,AD平分∠BAC,求证:AB=AC+DC.ACD过点D作DE⊥AB构造了:全等的直角三角形且距离相等BE思考:(1)若AB=15cm,则△BED的周长是多少?(2)能否用截长补短法,在AB上截取AE=AC?角平分线上点向两边作垂线段典例3:如图,梯形中,∠A=∠D=90o,BE、CE均是角平分线,求证:BC=AB+CD.ACD过点E作EF⊥BC构造了:全等的直角三角形且距离相等BF思考:1.有没有其他辅助线的做法2.你从本题中还能得到哪些结论?EⅡ.角平分线上点向两边作垂线段典例4:如图,OC平分∠AOB,∠DOE+∠DPE=180o,求证:PD=PE.ACD过点P作PF⊥OA,PG⊥OB构造了:全等的直角三角形且距离相等BF思考:你从本题中还能得到哪些结论?EPGO目的:构造直角三角形,得到斜边相等适用情况:图中已经存在一条线段MN和垂直平分线上一个点X语言描述:连结XM和XN注意点:双添---在图形上添虚线在证明过程中描述添法Ⅲ.垂直平分线上点向两端连线段如图:PD、PE分别垂直平分线段AB、BC,则PA____PCABCPDE问题1:在某一乡村公路L的同侧,有两个村庄A、B,为了便于两个村庄的人看病,乡政府计划在公路边上修建一所医院,使得它到两村庄的距离相等,试问医院的院址P应选在何处?LABCDP联系生活问题2:有三个村庄A、B、C,为了便于三个村庄的人看病,乡政府计划修建一所医院,使得它到三个村庄的距离相等,试问医院的院址P应选在何处?ABCP想一想,P点与BC有怎样的关系?DEFG三角形三条边的中垂线是交于一点的,这个点到三个顶点距离相等目的:构造直角三角形,得到斜边相等适用情况:图中已经存在一条线段MN和垂直平分线上一个点X语言描述:连结XM和XN注意点:双添---在图形上添虚线在证明过程中描述添法Ⅳ.中线延长一倍1.已知,如图AD是△ABC的中线,Ⅳ.中线延长一倍ABCDE)(21ACABAD求证:延长AD到点E,使DE=AE,连结CE.思考:若AB=3,AC=5,求AD的取值范围?mB'AC=42.35mBAB'=42.23已知在△ABC中,∠C=2∠B,∠1=∠2求证:AB=AC+CDADBCE12在AB上取点E使得AE=AC,连接DE截长F在AC的延长线上取点F使得CF=CD,连接DF补短A1BCD234如图所示,已知AD∥BC,∠1=∠2,∠3=∠4,直线DC经过点E交AD于点D,交BC于点C。求证:AD+BC=ABEF在AB上取点F使得AF=AD,连接EF截长补短例1如图,已知:在正方形ABCD中,∠BAC的平分线交BC于E.求证:AB+BE=AC.ABCDFEG截长补短法旋转法对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。.例3如图所示,已知点、分别在正方形的边与上,并且AF平分∠EAD,求证:BEDFAEABCDEFG45EAFBDACFE•如图,已知在正方形ABCD中,E在BC上,•F在DC上,BE+DF=EF.求证:.BACABCEDNM•如图,ΔABC中,E是BC边上的中点,DE⊥BC于E,交的平分线AD于D,过D作DM⊥AB于M,作DN⊥AC于N.求证:BM=CN.1.如图,△ABC中,∠C=90o,AC=BC,AD平分∠ACB,DE⊥AB.若AB=6cm,则△DBE的周长是多少?Ⅴ.“周长问题”的转化借助“角平分线性质”BACDEBE+BD+DE=BE+BD+CD=BE+BC=BE+AC=BE+AE=AB2.如图,△ABC中,∠C=90o,D在AB的垂直平分线上,E在AC的垂直平分线上.若BC=6cm,求△ADE的周长.Ⅴ.“周长问题”的转化借助“垂直平分线性质”BACDEAD+AE+DE=BD+CE+DE=BC3.如图,A、A1关于OM对称,A、A2关于ON对称.若A1A2=6cm,求△ABC的周长.Ⅴ.“周长问题”的转化借助“垂直平分线性质”BACOMAB+AC+BC=A1B+A2C+BC=A1A2A1A2N4.如图,△ABC中,MN是AC的垂直平分线.若AN=3cm,△ABM周长为13cm,求△ABC的周长.Ⅴ.“周长问题”的转化借助“垂直平分线性质”BACMAB+BC+AC=AB+BM+MC+6N=AB+BM+AM+6=13+65.如图,△ABC中,BP、CP是△ABC的角平分线,MN//BC.若BC=6cm,△AMN周长为13cm,求△ABC的周长.Ⅴ.“周长问题”的转化借助“等腰三角形性质”BACPAB+AC+BC=AM+BM+AN+NC+6N=AM+MP+AN+NP+6=13+6M=AM+AN+MN+6线段与角求相等,先找全等试试看若有等角等线段,构筑全等把线添图中有角平分线,可向两边作垂线。线段垂直平分线,常向两端把线连。线段计算和与差,巧用截长补短法。三角形里有中线,延长中线=中线。想作图形辅助线,切莫忘记要双添。