江苏省2012年普通高校“专转本”选拔考试高等数学试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源教授1、考生务必将密封线内的各项目及第2页右下角的座位号填写清楚.2、考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效.3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟.一、选择题(本大题共6小题,每小题4分,满分24分)1、极限)3sin1sin2(limxxxxx()A.0B.2C.3D.52、设)4(sin)2()(2xxxxxf,则函数)(xf的第一类间断点的个数为()A.0B.1C.2D.33、设232152)(xxxf,则函数)(xf()A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值4、设yxz3)2ln(在点)1,1(处的全微分为()A.dydx3B.dydx3C.dydx321D.dydx3215、二次积分dxyxfdyy),(101 在极坐标系下可化为()A.dfd)sin,cos(40sec0 B.dfd)sin,cos(40sec0 C.dfd)sin,cos(24sec0 D.dfd)sin,cos(24sec0 6、下列级数中条件收敛的是()A.12)1(1nnnnB.1)23()1(nnnC.12)1(nnnD.1)1(nnn二、填空题(本大题共6小题,每小题4分,共24分)7要使函数xxxf1)21()(在点0x处连续,则需补充定义)0(f_________.8、设函数xexxxy22212(),则)0()7(y____________.9、设)0(xxyx,则函数y的微分dy___________.10、设向量ba,互相垂直,且,,23ba,则ba2___________.11、设反常积分21dxeax,则常数a__________.12、幂级数nnnnxn)3(3)1(1的收敛域为____________.三、计算题(本大题共8小题,每小题8分,共64分)13、求极限)1ln(2cos2lim320xxxxx.14、设函数)(xyy由参数方程ttyttxln212所确定,求22,dxyddxdy.15、求不定积分dxxx2cos12.16、计算定积分dxxx21121 .17、已知平面通过)3,2,1(M与x轴,求通过)1,1,1(N且与平面平行,又与x轴垂直的直线方程.18、设函数)(),(22yxxyxfz,其中函数f具有二阶连续偏导数,函数具有二阶连续导数,求yxz2.19、已知函数)(xf的一个原函数为xxe,求微分方程)(44xfyyy的通解.20、计算二重积分Dydxdy,其中D是由曲线1-xy,直线xy21及x轴所围成的平面闭区域.四、综合题(本大题共2小题,每小题10分,共20分)21、在抛物线)0(2xxy上求一点P,使该抛物线与其在点P处的切线及x轴所围成的平面图形的面积为32,并求该平面图形绕x轴旋转一周所形成的旋转体的体积.22、已知定义在),(上的可导函数)(xf满足方程3)(4)(31xdttfxxfx,试求:(1)函数)(xf的表达式;(2)函数)(xf的单调区间与极值;(3)曲线)(xfy的凹凸区间与拐点.五、证明题(本大题共2小题,每小题9分,共18分)23、证明:当10x时,361arcsinxxx.24、设0)0(0)()(20= xgxxdttgxfx,其中函数)(xg在),(上连续,且3cos1)(lim0xxgx证明:函数)(xf在0x处可导,且21)0(f.一.选择题1-5BCCABD二.填空题7-122e128dxxxn)ln1(52ln]6,0(三.计算题13、求极限)1ln(2cos2lim320xxxxx.原式=30304202sinlim4sin22lim2cos2limxxxxxxxxxxxx121621lim6cos1lim22020xxxxxx14、设函数)(xyy由参数方程ttyttxln212所确定,求22,dxyddxdy.原式=ttttdtdxdtdydxdy21122212112)()(22222tttdtdxdtdxdyddxdxdyddxyd15、求不定积分dxxx2cos12.原式=)12(tantan)12(tan)12(cos122xxdxxxdxdxxxCxxxxdxxxcosln2tan)12(tan2tan)12(16、计算定积分dxxx21121 .原式=令tx12,则原式=613arctan211221312312tdttdtttt 17、已知平面通过)3,2,1(M与x轴,求通过)1,1,1(N且与平面平行,又与x轴垂直的直线方程.解:平面的法向量)2,3,0(iOMn,直线方向向量为)3,2,0(inS,直线方程:312101zyx18、设函数)(),(22yxxyxfz,其中函数f具有二阶连续偏导数,函数具有二阶连续导数,求yxz2.解:xyffxz221yxfxyfxfyxz2222212219、已知函数)(xf的一个原函数为xxe,求微分方程)(44xfyyy的通解.解:xxexxexf)1()()(,先求044yyy的通解,特征方程:0442rr,221、r,齐次方程的通解为xexCCY221)(.令特解为xeBAxy)(,代入原方程得:1969xBAAx,有待定系数法得:19619BAA,解得27191BA,所以通解为xxexexCCY)27191()(22120、计算二重积分Dydxdy,其中D是由曲线1-xy,直线xy21及x轴所围成的平面闭区域.原式=12102121yydxydy .四.综合题21、在抛物线)0(2xxy上求一点P,使该抛物线与其在点P处的切线及x轴所围成的平面图形的面积为32,并求该平面图形绕x轴旋转一周所形成的旋转体的体积.解:设P点)0)(,(0200xxx,则02xk切,切线:)(2,0020xxxxy即xxxy0202,,由题意32)2(200020xdyyxxy,得20x,)4,2(P1516)44(212204xdxxdxVx 22、已知定义在),(上的可导函数)(xf满足方程3)(4)(31xdttfxxfx,试求:(1)函数)(xf的表达式;(2)函数)(xf的单调区间与极值;(3)曲线)(xfy的凹凸区间与拐点.解:(1)已知3)(4)(31xdttfxxfx两边同时对x求导得:23)(4)()(xxfxfxxf即:xyxy33,则323cxxy由题意得:2)1(f,1c,则323)(xxxf(2)2,0,063)(212xxxxxf列表讨论得在),2()0,(单调递增,在)2,0(单调递减。极大值0)0(f,极小值4)2(f(3)1,066)(xxxf列表讨论得在)1,(凹,在),1(凸。拐点)2,1(五、证明题23、证明:当10x时,361arcsinxxx.解:令0)0(,61arcsin)(3fxxxxf,0)0(,21111)(22fxxxf0)1)1(1()1()(3232xxxxxxf,在10x,)(xf单调递增,0)0()(fxf,所以在10x,)(xf单调递增,则有0)0()(fxf,得证。24、设0)0(0)()(20= xgxxdttgxfx,其中函数)(xg在),(上连续,且3cos1)(lim0xxgx证明:函数)(xf在0x处可导,且21)0(f.解:因为3cos1)(lim0xxgx,即321)(lim20xxgx所以有23)(lim20xxgx又因为)(xg在),(上连续,所以0)(lim)0(0xggx,则)0(2123313)(lim)(lim)0()(lim20300200fxxgxdttgxgxdttgxxxxx