专题:带电粒子在有界磁场中的运动剖析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

•1、常见的五种有界磁场:•单边界磁场、•双边界磁场、•矩形磁场、•圆形磁场、•三角形磁场2、有界磁场中运动问题存在(1)求半径和运动时间(2)临界问题(3)多解问题(4)极值问题概述•1、本类问题对知识考查全面,涉及到力学、电学、磁学等高中物理的主干知识,对学生的空间想象能力、分析综合能力、应用数学知识解决物理问题能力有较高的要求,是考查学生多项能力的极好的载体,因此成为历年高考的热点。•2、从试题的难度上看,多属于中等难度或较难的计算题。原因有二:一是题目较长,常以科学技术的具体问题为背景,从实际问题中获取、处理信息,把实际问题转化成物理问题。二是涉及数学知识较多(特别是几何知识)。带电粒子在匀强磁场中的运动由洛伦兹力提供向心力rmv2qvB=轨道半径:qBmvr=运动周期:vT=2rqB2m=——周期T与R和v无关仅由粒子种类(m、q)决定,和磁感应强度B决定。角速度:mqBω频率:mqBTf21动能:m(qBR)mvEk22122解题的基本过程与方法1找圆心:已知任意两点速度方向:作垂线可找到两条半径,其交点是圆心。已知一点速度方向和另外一点的位置:作速度的垂线得半径,连接两点并作中垂线,交点是圆心。vvOvO3定半径:几何法求半径公式求半径4算时间:先算周期,再用圆心角算时间qBmT2θθαααθ=2α注意:θ应以弧度制表示2画圆弧:Tt2附:电偏转与磁偏转的区别BLvyROθ注意:(1)电偏转是类平抛运动磁偏转是匀速圆周运动(2)这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点。这点与带电粒子在匀强电场中的偏转结论不同!(2)侧移距离yBqmBqmt22Bdvrrθ(1)偏向角(回旋角)θrdsin(3)时间t222)(yrdrBqmvrt注意区分“电偏转”和“磁偏转”yxOvvaB60º练一个质量为m电荷量为q的带电粒子(不计重力)从x轴上的P(a,0)点以速度v,沿与x正方向成60º的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。Bqmvar32aqmvB23得射出点坐标为(0,)a3O′解析:练、如图,虚线上方存在磁感应强度为B的磁场,一带正电的粒子质量m、电量q,若它以速度v沿与虚线成300、900、1500、1800角分别射入,1.请作出上述几种情况下粒子的轨迹2.观察入射速度、出射速度与虚线夹角间的关系3.求其在磁场中运动的时间。单边界磁场入射角300时qBmqBmt3236060入射角900时qBmqBmt2360180入射角1500时qBmqBmt352360300入射角1800时qBmTt2对称性有用规律一:过入射点和出射点作一直线,入射速度与直线的夹角等于出射速度与直线的夹角,并且如果把两个速度移到共点时,关于直线轴对称。强调:本规律是在单边界磁场中总结出的,但是适用于任何类型的磁场例如图所示,在y0的区域内存在匀强磁场,磁场方向如图,磁感应强度为B。一带正电的粒子以速度v从O点射入磁场,入射方向在xoy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的比荷q/m。xyopθvxyopθvθθv洛fθ入射速度与边界夹角=出射速度与边界夹角LBvmqsin24sinLR①速度较小时,作半圆运动后从原边界飞出;②速度增加为某临界值时,粒子作部分圆周运动其轨迹与另一边界相切;③速度较大时粒子作部分圆周运动后从另一边界飞出SvvBPSvSQPQQ①速度较小时,作圆周运动通过射入点;②速度增加为某临界值时,粒子作圆周运动其轨迹与另一边界相切;③速度较大时粒子作部分圆周运动后从另一边界飞出圆心在过入射点跟速度方向垂直的直线上圆心在过入射点跟边界垂直的直线上圆心在磁场原边界上量变积累到一定程度发生质变,出现临界状态.平行直线边界磁场1v1RED1o2oF2RG例题.如图所示,在边长为2a的等边三角形△ABC内存在垂直纸面向里磁感应强度为B的匀强磁场,有一带电量为q、质量为m的粒子从距A点的D点垂直于AB方向进入磁场。若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出?a3maqBvmaqB3)32(3aa3~)332(答案:要粒子能从AC间离开磁场,粒子速率应满足粒子从距A点的间射出EG带电粒子在三角形区域中的运动BvO边界圆从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。带电粒子在圆形磁场中的运动特殊情形:轨迹圆O′αθθ有用规律二在圆形磁场内,入射速度沿径向,出射速度也必沿径向.θ+α=π从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。带电粒子在圆形磁场中的运动一般情形:有用规律三:两圆心连线OO′与两个交点的连线公共弦AB垂直平分。BO边界圆轨迹圆BCAO'O1Rθ2例如图虚线所围圆形区域内有方向垂直纸面向里的匀强磁场B。电子束沿圆形区域的直径方向以速度v射入磁场,经过磁场区后,电子束运动的方向与原入射方向成θ角。设电子质量为m,电荷量为e,不计电子之间的相互作用力及所受的重力。求:(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;(3)圆形磁场区域的半径r。vBOrvθ解:(1))本题是物理方法求半径(eBmvR(2)由几何知识得:圆心角:α=θeBmTt2(3)由如图所示几何关系可知,Rrtan22taneBmvr所以:BvOBqT=2m2t=θT练、如图虚线所示区域内有方向垂直于纸面的匀强磁场,一束速度大小各不相同的质子正对该区域的圆心O射入这个磁场;结果,这些质子在该磁场中运动的时间有的较长,有的较短,其中运动时间较长的粒子()A.射入时的速度一定较大B.在该磁场中运动的路程一定较长C.在该磁场中偏转的角度一定较大D.从该磁场中飞出的速度一定较小θ1R1s1θ2R2s2BqmvR=CD2tanRr练、某离子速度选择器的原理图如图,在半径为R=10cm的圆形筒内有B=1×10-4T的匀强磁场,方向平行于轴线。在圆柱形筒上某一直径两端开有小孔a、b。现有一束比荷为q/m=2×1011C/kg的正离子,以不同角度α入射,其中入射角α=30º,且不经碰撞而直接从出射孔射出的离子的速度v大小是()A.4×105m/sB.2×105m/sC.4×106m/sD.2×106m/s解:rmv2qvB=αaObO′rr作入射速度的垂线与ab的垂直平分线交于O′点,O′点即为轨迹圆的圆心。画出离子在磁场中的轨迹如图示:∠aO′b=2=60º,则r=2R=0.2mm/s10420101026411.mqBrvC练、一磁场方向垂直于xOy平面,分布在以O为中心的圆形区域内。质量为m、电荷量为q的带电粒子,由原点O开始运动,初速为v,方向沿x正方向。粒子经过y轴上的P点,此时速度方向与y轴的夹角为30º,P到O的距离为L。不计重力。求磁感强度B和磁场区域的半径R。基本思路:ByxvOPLv30°Rr解析:2)找出有关半径的几何关系:1)作出运动轨迹;L=3r3)结合半径、周期公式解。qvB=Rmv2qLmvB3LR33我们学了什么1.带电粒子进入有界磁场,运动轨迹为一段弧线.3.注意圆周运动中的对称性:(1)粒子进入单边磁场时,入射速度与边界夹角等于出射速度与边界的夹角,并且两个速度移到共点时,具有轴对称性。(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.2.解题的基本步骤为:找圆心——画轨迹——定半径4、解题经验:运动轨迹的半径R往往跟线速度V联系在一起,进而跟磁感应强度B、质荷比q/ml有关。运动轨迹对应的圆心角θ往往跟运动时间t有关。总而言之:几何量用几何方法求。几何量与物理量有关。多解问题1.电性不确定引起的分类讨论问题。2.入射点不确定引起的多解问题。3.出射点不确定引起的多解问题。4.入射速度方向确定、大小不确定,从而使得轨迹多样,并且出射点不确定,引起的多解问题。5.入射速度大小确定,方向不确定,从而引起的多解问题OyxBv60º例、如图,在第I象限范围内有垂直xOy平面的匀强磁场B。质量为m、电量大小为q的带电粒子(不计重力),在xOy平面里经原点O射入磁场中,初速度为v0,且与x轴成60º角,试分析计算:(1)穿越磁场时运动方向发生的偏转角多大?(2)带电粒子在磁场中运动时间多长?如粒子带正电,则:如粒子带负电,则:一、电性不确定引起的分类讨论60º120º例如下图所示,两块长度均为5d的金属板相距d,平行放置,下板接地,两极间有垂直只面向里的匀强磁场,一束宽为d的电子束从两板左侧垂直磁场方向射入两极间,设电子的质量为m,电量为e,入射速度为v0,要使电子不会从两极间射出,求匀强磁场的磁感应强度B应满足的条件。5dv0d二、入射点不确定引起的多解问题v0思考:1.假设磁场是无界的,各电子的运动轨迹怎样?2.磁场较小时,轨迹半径较大。哪个电子最有可能从右侧飞出?半径相等的圆所有运动轨迹的圆心在一条直线上最上面的电子3.当磁场很大,运动半径较小,哪个电子最有可能从左侧飞出?依然是最上面的电子综上所述,不管B取什么值,在同一磁场中的电子的运动轨迹的半径都是一样的,只是运动轨迹的位置不同,而且只要最上面的电子不飞出,其他电子都不会飞出。O1O2R1R2①B较大时,R较小,电子恰好从左侧飞出有:edmvBdeBmvdR00222,2,得即dRRddR13,)5()(121221得②B较小时,R较大,电子恰好从右侧飞出,有:edmvBeBmv13d1300得edmvBedmv00213综上所述,5dd例、如图,长为L的水平不带电极板间有垂直纸面向内的匀强磁场B,板间距离也为L,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁场以速度v平行极板射入磁场,欲使粒子不打在极板上,则入射速度v应满足什么条件?+q,mvLBLO三、出射点不确定引起的多解问题mqBLvRRR454L5,L)2L(1121221,从而得从右边出,mqBLv44LR22,从而从左边出,mqBLvmqBLv454或者综上所述,四、速度方向确定,大小不确定引起的多解问题例、如图,若电子的电量e,质量m,斜向上与边界成60º射入磁感应强度B,宽度d的磁场,若要求电子不从右边界穿出,则初速度v0应满足什么条件?斜向下与边界成60º射入时,初速度又应该满足什么条件?deBv0r+rcos60º=ddeBv0r-rcos60º=daOdbcBv0R1例、如图,一端无限伸长的矩形区域abcd内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场。从边ad中点O射入一速率v0、方向与Od夹角θ=30º的正电粒子,粒子质量为m,重力不计,带电量为q,已知ad=L。(1)要使粒子能从ab边射出磁场,求v0的取值范围。(2)取不同v0值,求粒子在磁场中运动时间t的范围?(3)从ab边射出的粒子在磁场中运动时间t的范围。R1+R1sin30º=L/2解:(1)得R1=L/3R2R2-R2cos60º=L/2得:R2=L。(1)≥v0≥mqBLmqBL3例、如图,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。现从点O以同一速率将相同的带负电粒子向纸面内各个不同的方向射出,它们均做半径为r的匀速圆周运动,求带电粒子打在边界PQ上的范围(粒子的重力不计)。O2rPQPQOr(31)MNr答案:O2rrQPMN五、速度大小确定,方向不确定引起的多解问题2RR2RMNO2RR2RMNO2R2R2RMNOR2R2RMNOD.A.B.C.MNBOA例、如图,水平放置的平板MN上方有方向垂直于纸面向里的匀强磁场,磁感应强度为B,许多质量为m,带电量为+q的粒子,以相同

1 / 94
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功