一、温故知新1.相似三角形的判定方法:通过定义(三边对应成比例,三角相等)相似三角形判定的预备定理三边成比例的两个三角形相似两边成比例且夹角相等的两个三角形相似两角分别相等的两个三角形相似斜边和一条直角边成比例的两个直角三角形相似对应角相等,对应边成比例相似三角形还有哪些性质?2.相似三角形的性质:二、学习新知三角形中,除了角度和边长外,还有哪些几何量?高、角平分线、中线的长度,周长、面积等高角平分线中线思考?ABCA'B'C'D'D探究1如图,△ABC∽△A'B'C',相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?如图,分别作△ABC和△A'B'C'的对应高AD和A'D'.∴∠B=∠B'kBAABDAAD''''则∠ADB=∠A'D'B'.∵△ABC∽△A'B'C'∴△ABD∽△A'B'D'相似三角形对应高的比等于相似比.如图,△ABC∽△A'B'C',相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?探究1A'B'C'E'ABCE如图,分别作△ABC和△A'B'C'的对应中线AE和A'E',kEAAE''猜想你能类比前面的方法证明吗?相似三角形对应中线的比等于相似比.如图,△ABC∽△A'B'C',相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?探究1A'B'C'F'ABCF如图,分别作△ABC和△A'B'C'的对应角平分线AF和A'F'.kFAAF''猜想你能类比前面的方法证明吗?相似三角形对应角平分线的比等于相似比.kCCCBAABC'''△△猜想A'B'C'ABC相似三角形的周长有什么关系?相似三角形对应线段的比等于相似比.相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比.知识要点探究21、如图,△ABC∽△A'B'C',相似比为k,求它们周长的比.∵△ABC∽△A'B'C'相似三角形周长的比等于相似比.kACCACBBCBAAB'''''''','',''ACkCACBkBCBAkABkACCBBAAkCCkBBkAACCBBACABAABllCBAABC'''''''''''''''''''''A'B'C'ABC2、如图,△ABC∽△A1B1C1,相似比为k,它们面积的比与相似比有什么关系?思考?1111BCADkBCADA1B1C1ABC∵∴相似三角形面积的比等于相似比的平方.DD1S△ABCS△A1B1C1=12BCAD111112BCAD=k·k=k21111DAADCBBC如图,分别作△ABC和△A1B1C1的对应高AD和A1D1.通过前面的思考、探索、推理,我们得到相似三角形有如下性质;相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比等于相似比。相似三角形面积的比等于相似比的平方。1.判断(1)一个三角形的各边长扩大为原来的5倍,这个三角形的周长也扩大为原来的5倍;()(2)一个四边形的各边长扩大为原来的9倍,这个四边形的面积也扩大为原来的9倍.()(1)一个三角形各边扩大为原来5倍,相似比为1:5155原周长=扩大倍周长扩大5倍周长=5原周长三、应用新知解:一个三角形各边扩大为原来9倍,相似比为1:92199SS原四边形=扩大倍四边形边长扩大9倍四边形=81倍原四边形的的面积(2)一个四边形的各边长扩大为原来的9倍,这个四边形的面积也扩大为原来的9倍.例1.如图,在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,若△ABC的边BC上的高为6,面积为,求△DEF的边EF上的高和面积.解:在△ABC和△DEF中,∵AB=2DE,AC=2DF∴21ACDFABDE又∠D=∠A∴△DEF∽△ABC,相似比为21ABCDEF512∵△ABC的边BC上的高为6,面积为512∴△DEF的边EF上的高为,面积为53512212)(3621例2:如图,△ABC~△A'B'C',它们的周长分别是60厘米和72厘米,且AB=15厘米,B'C'=24厘米。求:BC、AC、A'B'、A'C'。C'B'A'CBA解:因为△ABC~△A'B'C‘所以ABBCA'B'B'C'6072又AB=15厘米B'C'=24厘米所以A'B'=18厘米BC=20厘米故AC=60–15–20=25(厘米)A'C'=72–18–24=30(厘米)1.已知ΔABC与ΔA’B’C’的相似比为2:3,则周长比为,对应边上中线之比,面积之比为。2.如果两个相似三角形的面积之比为1:9,则它们对应边的比为______,对应角平分线的比为______,周长的比为______。3.如果两个相似三角形的面积之比为2:7,较大三角形一边上的高为7,则较小三角形对应边上的高为______。1:31:31:3142:32:34:9随堂练习4、已知△ABC∽△A´B´C´,AD、A´D´分别是对应边BC、B´C´上的高,若BC=8cm,B´C´=6cm,AD=4cm,则A´D´等于()A16cmB12cmC3cmD6cm5、两个相似三角形对应高的比为3∶7,它们的对应角平分线的比为()A7∶3B49∶9C9∶49D3∶7CD10.如图,ABCD中,E为AD的中点,若SABCD=1,则图中阴影部分的面积为()A、B、C、D、31516181BAEDCFB9.已知梯形ABCD中,AD∥BC,对角线AC、BD交于点O,若△AOD的面积为4cm2,△BOC的面积为9cm2,则梯形ABCD的面积为_________cm2ABCDO解:∴△AOD∽△COBS△AOD:S△COB=4:9∴OD:OB=2:3∴S△AOD:S△AOB=2:3∴S△AOB=6cm2∴梯形ABCD的面积为25cm2∵AD∥BC251、相似三角形对应边成____,对应角______.2、相似三角形对应边上的高、对应边上的中线、对应角平分线的比都等于________.3、相似三角形周长的比等于________,相似三角形面积的比等于______________.课堂小结相似比的平方相似三角形的性质相似多边形也有同样的结论比例相等相似比相似比事实上,若两个图形相似,其中所有的对应线段的比都等于相似比.