1.如图所示,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交与点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0),试分析判断a,b,c,b2﹣4ac,2a+b,2a-b,a+b+c,a-b+c的符号,其中大于零的有()个.A.4个B.3个C.2个D.1个2.(2011•兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个考点:二次函数图象与系数的关系。专题:函数思想。分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:(1)根据图示知,该函数图象与x轴有两个交点,∴△=b2﹣4ac>0;故本选项正确;(2)由图象知,该函数图象与y轴的交点在(0,1),∴c<1;故本选项错误;(3)由图示,知对称轴x=﹣𝑏2𝑎>﹣1;又函数图象的开口方向向下,∴a<0,∴﹣b<﹣2a,即2a﹣b<0,故本选项正确;(4)根据图示可知,当x=1,即y=a+b+c<0,CDBOAyx∴a+b+c<0;故本选项正确;综上所述,我认为其中错误的是(2),共有1个;故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4.(2012重庆)已知二次函数)0(2acbxaxy的图象如图所示对称轴为21x。下列结论中,正确的是()A.abc0B.a+b=0C.2b+c0D.4a十c2b5.已知二次函数)0(2acbxaxy的图象如图所示,有下列五个结论:①abc0;②ba+c;③4a+2b+c0;④2c3b;⑤a+bm(am+b)(m≠1,为实数)。其中正确的结论有()A.2个B.3个C.4个D.5个6.已知二次函数)0(2acbxaxy的图象如图,有下列结论:①b2﹣4ac>0;②abc0③8a+c0;④x=1-1yx-2-1x=1Oyx9a+3b+c0.⑤6a+3b+c0.其中正确的有()A.4个B.3个C.2个D.1个8.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个分析:首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴x=﹣,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b>0,根据a、b、c的正负即可判断出②的正误;利用b﹣2a=0时,求出a﹣2b+4c<0,再利用当x=4时,y>0,则16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0.解答:解:根据图象可得:a>0,c>0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∴abc<0,故②正确;③a﹣2b+4c<0;∵b+2a=0,∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c,∵a﹣b+c=0,∴4a﹣4b+4c=0,∴﹣4b+4c=﹣4a,∵a>0,∴a﹣2b+4c=﹣4b+4c=﹣4a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;故正确为:①②③三个.故选:A.解:根据图象可得:a>0,c>0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∴abc<0,故②正确;③a﹣2b+4c<0;∵b+2a=0,∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c,∵a﹣b+c=0,∴4a﹣4b+4c=0,∴﹣4b+4c=﹣4a,∵a>0,∴a﹣2b+4c=﹣4b+4c=﹣4a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;故正确为:①②③三个.故选:A.此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).