DEH及EH系统常见故障的原因分析及解决办法一.调节系统摆动1.1现象现象1:DEH控制系统在运行中,发现汽轮机转速很难控制在3000r/min,大概有±25r/min的转速波动,造成并网困难。现象2:主汽阀和调节汽阀开度不稳定,调节汽阀开度波动大且摆动频繁。如某台135MW机组带100MW运行,出现高压调节汽阀波动频繁、主汽压力波动大.运行人员将协调控制方式改为DEH控制方式.投人功率反馈回路。约10s后高调门出现较大范围的波动,功率出现振荡、摆动现象,运行人员立即退出功率反馈回路。负荷在约30s内降到60MW,导致主汽压力急剧上升。锅炉安全阀动作。1.2原因分析调节系统摆动典型原因:(1)热工信号问题。当二支位移传感器发生干扰或DEH各控制柜及端子柜内屏蔽接地线不好,电源地CG和信号地SG没有分开,造成VCC卡输出信号含有交流分量。当伺服阀信号电缆有某点接地时均会发生油动机摆动现象。(我公司2号机组出现过中调门信号电缆破皮,造成调门摆动的故障)(2)伺服阀故障。某个伺服阀故障(通常是因为油质欠佳造成伺服阀机械部分卡涩),其对应的调门将不能正常响应DEH控制系统的输出指令,从而引起调速系统工作不正常。伺服阀故障现象比较常见,轻则引起调节系统摆动,重则造成停机或机组不能正常启动。伺服阀故障的主要原因是油质不好,有渣滓等沉淀物存在,造成油质不合格,使伺服阀堵塞。(3)阀门突跳引起的输出指令变化。当某一阀门工作在一个特定的工作点时,由于蒸汽力的作用,使主阀由门杆的下死点突然跳到门杆的上死点,造成流量增大。根据功率反馈,DEH发出指令关小该阀门,在阀门关小的过程中,同样在蒸汽力的作用下,主阀又由门杆的上死点突然跳到阀杆的下死点,造成流量减小,DEH又发出开大该阀门指令。如此反复,造成油动机摆动。(4)油动机与阀门连接处松动,如连接的螺纹磨损,油动机与阀门的动作不一致,阀门具有一定的自由行程,但阀门开至某一中间位置,由于蒸汽力的左右,阀门开始晃动。(5)位移传感器LVDT故障,反馈信号失真,主要表现在插头松动、脱落,LVDT线圈开路或短路;(6)伺服阀指令线松动,导致伺服阀频繁动作;(7)调速汽门重叠度设置不合理;(8)阀门控制VCC卡内部的两路LVDT频率接近,造成振荡;(9)VCC卡内部的增益设置不合理。1.3解决方法对于热工信号问题造成的调节系统摆动,解决的办法是将所有现场信号进行屏蔽,信号地线均接到信号地SG,并与电源地CG分开。另外一种原因就是VCC卡故障。如某台135MW机组GV3调门运行中发现有小幅摆动,经检查发现VCC卡中LVDT变送器外壳与电路板之间存在短路现象,于是在VCC卡中LVDT变送器外壳与电路板上加装上隔离片,消除了VCC卡中的线路短路,解决了调节系统摆动问题。对于油质问题引起的调节系统摆动,解决的方法是加强滤油、保证油质,特别要注意EH油系统检修后的油循环,在油质合格前将伺服阀旁路,不让油流过伺服阀,油质合格后,再将伺服阀投入,可有效地防止伺服阀“大面积”堵塞。例子:某厂高压调门抖动在正常单阀运行条件下,GV2高压调节汽门大幅波动,而其它3个高压调门没有波动。这种波动是随机出现的。GV2高压调节汽门先是小幅摆动,然后突然大幅波动,此后摆动幅度逐渐减小直至消失。分析后认为GV高压调节汽门摆动的原因在于阀位位移反馈信号出现问题。即在正常运行时条件下机组振动相对较大,而位移传感器固定在机组操纵座上。随着机组振动,位移传感器引出到航空插头处的焊点可能出现虚焊或松动现象,则当焊点振开时GV#2高压调节汽门的位移反馈信号消失。位移传感器的位置反馈信号突然消失,则输出信号就是给定信号,为+信号,GV#2高压调节汽门全开直至机械限位。由于GV#2高压调节汽门全开,功率增大。在DEH功率给定不变情况下.DEH接受功率增大信号后,又向高压调节汽门发出关小阀门指令。此时GV2高压调节汽门没有反馈信号,阀门无法停在稳定位置,于是又全关直至机械限位。机组输出功率降低,于是DEH又发出开阀指令,高压调节汽门又过开。这样反复波动就造成GV#2高压调节汽门大幅波动。由于是GV#2高压调节汽门位移传感器引出线焊点虚焊或松动造成这种结果。而焊点又没有完全断开,波动一段时间后引线又接上,所以GV#2高压调节汽门的波动是随机的,逐渐减小直至消失。二.油管振动1.1现象EH油管路振动虽然发生不多,但安装不好也会出现问题。如某台l35MW机组,系统运行一段时间后,发现EH油管路振动较大,特别是靠近油动机部分发生高频振荡,振幅达0.5mm以上,引起检修人员的极大关注,虽未产生故障,但油管振动会引起接头或管夹松动,造成泄漏,严重时会发生管路断裂,引发较大事故。1.2原因分析引起油管振动的主要原因如下。(1)机组振动。油动机与阀门本体相连,如135MW机组中压调门,油动机在汽缸的最上部.当机组振动较大时,势必造成油动机振动大,与之相连的油管振动也必然大。(2)管夹固定不好。《EH系统安装调试手册》中规定管夹必须可靠固定,如果管夹固定不好,会使油管发生振动(3)伺服阀故障,产生振荡信号,引起油管振动。(4)控制信号夹带交流分量,使HP油管内的压力交变产生油管振动。(5)没有足够的辅助油源(如蓄能器等)来稳定油压,如某厂一次调频动作时,由于在运转层调门附近没有蓄能器,系统蓄能器是位于0米层油站旁边。当阀门因频率动作时,导致用油量大幅波动而导致油管发生振动。1.3解决方法1.3.1对于振动类问题,可以通过试验来判断是哪一种原因引起的振动。如当振动发生时,通过强制信号将该阀门慢慢置于全关位置,关闭进油门,拔下伺服阀插头,测量振动。如果此时振动明显减小,说明是伺服阀或控制信号问题:如果振动依旧,说明是机组振动。对于前一种情况,打开进油门,使用伺服阀测试工具通过加信号的方法将阀门开启至原来位置,如果此时没有振动,说明是控制信号问题,由热工检查处理;如果振动加大,说明伺服阀故障,应立即更换伺服阀。1.3.2应检查系统油压的波动情况,如油管振动是因为油压波动引起,应检查蓄能器的配置是否正确,如油站与阀门距离较远,可考虑在调门附近增加适当的蓄能器以补充调门频繁动作而导致的用油量的增加。三.LVDT传感器故障1.1典型现象1.1.1某厂DEH系统采用LVDT(阀位反馈传感器)为双通道高选位置反馈方式,即阀位反馈传感器同时输两路阀位信号。进人控制系统后选阀位高值。该方式可以克服单通道位置反馈方式的部分缺陷,可以避免单通道阀位反馈传感器由于信号消失使阀门全开,从而引起汽轮机超速的可能性。但是双通道高选LVDT位置反馈也存在由于位置选高值会引起阀门关闭,使负荷减少的可能。如某厂4号机组(135MW)运行中出现1号调门关闭,负荷从97.8MW下滑至57.4MW的现象,主汽压力从13.6MPa上升至14.4MPa,造成过热器安全门动作。本次异常的原因是1号调门的LVDT1故障。其开度信号虽然被高选选中,但未真实反映1号调门开度(比实际值偏大),DEH通过VCC卡硬件判断,将1号调门关闭。1.2原因分析及解决方法DEH控制系统的阀门执行机构是阀门位置伺服控制回路组成的闭环控制装置,跟随阀门移动的阀门位移传感器(LVDT)将阀门的位置信号转换成电气信号,作为伺服控制回路的负反馈。计算机输的阀门位置指令信号与阀门位置反馈信号相等时,阀门被控制在某一位置。可见阀门位置反馈信号在阀门伺服控制同路中是一个非常重要的信号,该信号的可靠性直接关系到闭环控制装置的可靠性。1.2.1采用LVDT智能高选阀位反馈方式。LVDT信号偏差大报警、自动判别并切除故障信号、信号超出正常范围时则输出为低限值等逻辑判断能力,使两只LVDT实现真正的双冗余,将系统故障率降到最低。1.2.2参数设置不当。在输入指令不变的情况下,调门反馈信号发生周期性的连续变化。2只LVDT在VCC卡内部高选,但如果2只LVDT频差过小,会导致高选在2只LVDT之间来回切换造成振荡,但这种振荡只要通过将频差调大即可避免。1.2.3机械原因造成故障。连接LVDT铁芯与线圈内壁产生径向摩擦,将铁芯或线圈磨坏,导致调门波动;这种情况比较复杂,原因很多,调门与LVDT膨胀不均、调门振动、铁芯固定不正等都会导致这种情况。1.2.4接线问题。专门为DEH控制及反馈信号电缆敷设单独的封闭电缆槽盒,使其与现场的干扰源屏蔽开来,以减少外界电场干扰的产生。2只LVDT导线用同1根电缆线造成信号干扰;LVDT导线与金属接触,极易造成导线磨损接地,致使位置反馈跳变,造成调节门摆动。正确的方法应当是每个LVDT单独采用1根屏蔽电缆。四.调门卡涩1.现象及原因分析1.1高调门打不开。某厂#2机组曾出现在处理GV2调门机械卡涩过程中,由于伺服阀(MOOG阀)故障,出现调门全关到“0”位后无法打开的现象。1.2部分高调门,部分中调门打不开。这些现象都直接影响机组的启动及正常运行,而且严重威胁设备的安全可靠性。产生的原因大致有以下几种情况:1)电液伺服阀故障导致蒸汽调门不好用。如伺服阀滤网、喷嘴堵塞,有黑色胶状物;阀芯与阀套过封度变小,阀芯破损严重,泄漏量增加等,都会引起电液伺服阀故障,造成蒸汽调门打不开或大幅度振动。2)试验电磁阀故障也会导致中调门无法开启。如试验电磁阀节流孔径偏小,误动作、阀芯卡涩未回座等症状都会引起试验电磁阀故障。3)快速卸载阀故障导致蒸汽调门无法开启。如卸载阀卡涩、不严密等导致快速卸载阀不好用,油压建立不起来使蒸汽调门打不开4)管道有残余杂质造成EH油质不合格。由于EH油质不合格会导致电液伺服阀、电磁阀、卸载阀故障,甚至DEH控制系统瘫痪。5)EH油长时间在高温区工作会发生氧化变质、水解反应和酸值升高,这样会产生一种类似碳化物的黑色、粘稠状物质,使油液颗粒度增加。该物质极易堵塞电液伺服阀滤网及喷嘴,造成阀的振动或产生忽开忽关现象,这也是非常普遍的现象。2.解决办法2.1加强EH油质监视及管理,严格按照制造厂的要求一丝不苟地进行油质监测和管理。2.2降低电液伺服阀的工作环境温度。2.3拆装电液伺服阀、试验电磁阀及快速卸载阀应严格按规定要求去做,不能受强磁场干扰,不能受空气污染,密封圈每次都要进行更换。2.4电液伺服阀需要定期进行更换滤网,密封圈等维护工作,同时,还需要定期返厂调整。2.5精滤器组件应长期投运,每个月清扫一次EH油箱上的磁棒。在长期运行期间也要定期检查滤芯,发现有问题及时更换,以确保油质始终保持洁净标准范围内。2.6在换新油时,要对新油进行不少于24h的循环冲洗(利用冲洗块),待油质合格后更换滤芯。2.7更新再生装置。