初一数学附加题例析解答题(共11小题)1.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧(如图1所示)时.试说明∠BOE=2∠COF;(2)当点C与点E,F在直线AB的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3)将图2中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD.设∠AOC=n°,若∠BOD=,则∠DOE的度数是_________(用含n的式子表示).2.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是_________;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.3.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;(3)若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.4.如图,已知A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②t为何值时,原点O恰为线段PQ的中点.5.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=40°,求∠DOE的度数;(2)若∠AOC=α,则∠DOE=_________(用含α代数式表示).6.选做题:已知当x=1时,代数式3ax3+bx2﹣2cx+4的值为8,代数式ax3+2bx2﹣cx﹣15的值为﹣14,那么当x=﹣1时,代数式5ax3﹣5bx2﹣4cx+6的值为多少?7.关于x的方程(m﹣1)xn﹣3=0是一元一次方程.(1)则m,n应满足的条件为:m_________,n_________;(2)若此方程的根为整数,求整数m的值.8.已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN=_________cm;(2)猜想线段MN与线段AB长度的关系,即MN=_________AB,并说明理由.9.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是_________;(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m,则m的最大值为_________;(3)若小明将1到n(n≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m.探究m的最小值和最大值.10.同一条直线上有A、B、C、D四点,已知:,且CD=4cm,求AB的长.11.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.参考答案与试题解析一.解答题(共11小题)1.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧(如图1所示)时.试说明∠BOE=2∠COF;(2)当点C与点E,F在直线AB的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3)将图2中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD.设∠AOC=n°,若∠BOD=,则∠DOE的度数是(30+n)°(用含n的式子表示).考点:角平分线的定义;角的计算;余角和补角.294950专题:计算题.分析:(1)设∠COF=α,则∠EOF=90°﹣α,根据角平分线性质求出∠AOF、∠AOC、推出∠BOE即可;(2)设∠AOC=β,求出∠AOF,推出∠COF、∠BOE、即可推出答案;(3)根据∠DOE=180°﹣∠BOD﹣∠AOE和∠AOE=90°﹣∠AOC,代入求出即可.解答:解:(1)设∠COF=α,则∠EOF=90°﹣α,∵OF是∠AOE平分线,∴∠AOF=90°﹣α,∴∠AOC=(90°﹣α)﹣α=90°﹣2α,∠BOE=180°﹣∠COE﹣∠AOC,=180°﹣90°﹣(90°﹣2α),=2α,即∠BOE=2∠COF;(2)解:成立,设∠AOC=β,则∠AOF=,∴∠COF=45°+=(90°+β),∠BOE=180°﹣∠AOE,=180°﹣(90°﹣β),=90°+β,∴∠BOE=2∠COF;(3)解:∠DOE=180°﹣∠BOD﹣∠AOE,=180°﹣(60﹣)°﹣(90°﹣n°),=(30+n)°,故答案为:(30+n)°.点评:本题考查了角平分线定义,角的大小计算等知识点的应用,主要培养学生分析问题和解决问题的能力,题目比较典型,有一定的代表性.2.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.考点:两点间的距离;数轴;一元一次方程的应用;比较线段的长短.294950专题:分类讨论.分析:(1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.解答:解:(1)设运动t秒时,BC=8单位长度,①当点B在点C的左边时,由题意得:6t+8+2t=24,解得:t=2(秒);②当点B在点C的右边时,由题意得:6t﹣8+2t=24,解得:t=4(秒).(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.(3)存在关系式=3.设运动时间为t秒,1°当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD﹣4,AP+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即=3;2°当3<t<时,点C在点A和点B之间,0<PC<2,①点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即=3;点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,当PC=时,有BD=AP+3PC,即=3;3°当t=时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC=时,有BD=AP+3PC,即=3;4°当<t时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC=时,有BD=AP+3PC,即=3.点评:本题考查两点间的距离,并综合了数轴、一元一次方程和线段长短的比较,难度较大,注意对第三问进行分情况讨论,不要漏解.3.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;(3)若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.考点:绝对值;数轴.294950专题:分类讨论.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|a+4|+(b﹣1)2=0,∴a=﹣4,b=1,∴|AB|=|a﹣b|=5;(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P不存在.当P在A、B之间时,|PA|=|x﹣(﹣4)|=x+4,|PB|=|x﹣1|=1﹣x,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x)=2.∴x=﹣,即x的值为﹣;(3)|PN|﹣|PM|的值不变,值为.∵|PN|﹣|PM|=|PB|﹣|PA|=(|PB|﹣|PA|)=|AB|=,∴|PN|﹣|PM|=.点评:本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.如图,已知A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②t为何值时,原点O恰为线段PQ的中点.考点:一元一次方程的应用;数轴;比较线段的长短.294950分析:(1)根据点C所表示的数,以及BC、AB的长度,即可写出点A、B表示的数;(2)①根据题意画出图形,表示出AP=6t,CQ=3t,再根据线段的中点定义可得AM=3t,根据线段之间的和差关系进而可得到点M表示的数;根据CN=CQ可得CN=t,根据线段的和差关系可得到点N表示的数;②此题有两种情况:当点P在点O的左侧,点Q在点O的右侧时;当P在点O的右侧,点Q在点O的左侧时,分别画出图形进行计算即可.解答:解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10;(2)①由题意得:AP=6t,