过已知点A、B作圆,可以作无数个圆.圆心在线段AB的垂直平分线上.各圆心的分布有什么特点?与线段AB有什么关系?新课导入大胆猜想AB垂直于弦的直径教案什么是轴对称图形?我们学过哪些轴对称图形?如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形.回顾线段角等腰三角形矩形菱形等腰梯形正方形圆圆也是轴对称图形吗?探究动画——沿着圆的任意一条直径对折圆是轴对称图形.任何一条直径所在的直线都是它的对称轴.圆有哪些对称轴?OOABCDE是轴对称图形.大胆猜想已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.下图是轴对称图形吗?已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=BE,AC=BC,AD=BD.⌒⌒⌒⌒证明:连结OA、OB,则OA=OB.∵垂直于弦AB的直径CD所在的直线既是等腰三角形OAB的对称轴又是⊙O的对称轴.∴当把圆沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,AC、AD分别和BC、BD重合.∴AE=BE,AC=BC,AD=BD⌒⌒⌒⌒⌒⌒⌒⌒叠合法DOABEC垂直于弦的直径平分弦,并且平分弦所对的两条弧.知识要点DOABEC垂径定理AE=BEAC=BCAD=BD⌒⌒⌒⌒CD是直径,AB是弦,CD⊥AB①直径过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧题设结论DOABEC垂径定理将题设与结论调换过来,还成立吗?这五条进行排列组合,会出现多少个命题?①直径过圆心③平分弦②垂直于弦④平分弦所对优弧⑤平分弦所对的劣弧(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.垂径定理的推论1DOABEC已知:CD是直径,AB是弦,CD平分AB求证:CD⊥AB,AD=BD,AC=BC⌒⌒⌒⌒一个圆的任意两条直径总是互相平分,但它们不一定互相垂直.因此这里的弦如果是直径,结论不一定成立.OABMNCD注意为什么强调这里的弦不是直径?①直径过圆心④平分弦所对优弧③平分弦②垂直于弦⑤平分弦所对的劣弧垂径定理的推论1(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.已知:CD是直径,AB是弦,并且AC=BC求证:CD平分AB,CD⊥AB,AD=BD⌒⌒⌒⌒DOABEC①直径过圆心⑤平分弦所对的劣弧③平分弦④平分弦所对优弧②垂直于弦垂径定理的推论1(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.已知:CD是直径,AB是弦,并且AD=BD求证:CD平分AB,CD⊥AB,AC=BC⌒⌒⌒⌒DOABEC②垂直于弦③平分弦①直径过圆心④平分弦所对优弧⑤平分弦所对的劣弧(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.垂径定理的推论1已知:AB是弦,CD平分AB,CD⊥AB,求证:CD是直径,AD=BD,AC=BC⌒⌒⌒⌒DOABEC②垂直于弦④平分弦所对优弧①直径过圆心③平分弦⑤平分弦所对的劣弧②垂直于弦⑤平分弦所对的劣弧①直径过圆心③平分弦④平分弦所对优弧(4)垂直于弦并且平分弦所对的一条弧的直径过圆心,并且平分弦和所对的另一条弧.③平分弦④平分弦所对优弧①直径过圆心②垂直于弦⑤平分弦所对的劣弧(5)平分弦并且平分弦所对的一条弧的直径过圆心,垂直于弦,并且平分弦所对的另一条弧.③平分弦⑤平分弦所对的劣弧①直径过圆心②垂直于弦④平分弦所对优弧④平分弦所对优弧⑤平分弦所对的劣弧①直径过圆心②垂直于弦③平分弦(6)平分弦所对的两条弧的直径过圆心,并且垂直平分弦.∴AM=BM,CM=DM⌒⌒⌒⌒垂径定理的推论2圆的两条平行弦所夹的弧相等.MOABNCD证明:作直径MN垂直于弦AB∵AB∥CD∴直径MN也垂直于弦CD∴AM-CM=BM-DM⌒⌒⌒⌒⌒⌒即AC=BDABCD两条弦在圆心的同侧两条弦在圆心的两侧垂径定理的推论2有这两种情况:OOABCDCDABE已知:AB.求作:AB的中点.⌒⌒点E就是所求AB的中点.⌒作法:1.连结AB.2.作AB的垂直平分线CD,交AB于点E.⌒小练习ABCDE已知:AB.求作:AB的四等分点.⌒⌒作法:1.连结AB.3.连结AC.2.作AB的垂直平分线,交AB于点E.⌒4.作AC的垂直平分线,交AC于点F.⌒5.点G同理.点D、C、E就是AB的四等分点.⌒ABC作AC的垂直平分线作BC的垂直平分线等分弧时一定要作弧所夹弦的垂直平分线.×CABO你能确定AB的圆心吗?⌒作法:1.连结AB.2.作AB的垂直平分线,交AB于点C.⌒3.作AC、BC的垂直平分线.4.三条垂直平分线交于一点O.点O就是AB的圆心.⌒你能破镜重圆吗?ABCmnO作弦AB、AC及它们的垂直平分线m、n,交于O点;以O为圆心,OA为半径作圆.作法:依据:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.垂径定理三角形EOABDCd+h=r222)2(adrdhar有哪些等量关系?在a,d,r,h中,已知其中任意两个量,可以求出其它两个量.你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.,拱高(弧的中点到弦的距离)为7.2m.赵州桥主桥拱的半径是多少?实际问题垂径定理的应用用表示主桥拱,设所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC,D为垂足,OC与AB相交于点D,根据前面的结论,D是AB的中点,C是的中点,CD就是拱高.ABABAB解:1137.418.7,22ADABAB=37.4,CD=7.2,OD=OC-CD=R-7.2BODACR解得R≈27.9(m)在Rt△OAD中,由勾股定理,得即R2=18.72+(R-7.2)2∴赵州桥的主桥拱半径约为27.9m.OA2=AD2+OD2课堂小结1.圆是轴对称图形任何一条直径所在的直线都是它的对称轴.O垂直于弦的直径平分弦,并且平分弦所对的两条弧.2.垂径定理DOABEC条件结论命题①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.3.垂径定理的推论经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.4.解决有关弦的问题1.判断:(1)垂直于弦的直线平分这条弦,并且平分弦所对的两弧.()(2)平分弦所对的一条弧的直径一定平分这条弦所对的另一弧.()(3)经过弦的中点的直径一定垂直于弦.()(4)圆的两条弦所夹的弧相等,则这两条弦平行.()(5)弦的垂直平分线一定平分这条弦所对的弧.()√√随堂练习2.在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.·OABE解:答:⊙O的半径为5cm.3.在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.D·OABCE证明:∴四边形ADOE为矩形,又∵AC=AB∴AE=AD∴四边形ADOE为正方形.4.在直径是20cm的⊙O中,的度数是60°,那么弦AB的弦心距是________.ABDABO53cm5.弓形的弦长为6cm,弓形的高为2cm,则这弓形所在的圆的半径为________.DCABOcm1346.已知P为⊙O内一点,且OP=2cm,如果⊙O的半径是3cm,,那么过P点的最短的弦等于____________.EDCBAPO25cm7.一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求这段弯路的半径.解:连接OC.●OCDEF8.已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.解:连结OA.过O作OE⊥AB,垂足为E,则OE=3cm,AE=BE.∵AB=8cm∴AE=4cm在Rt△AOE中,根据勾股定理有OA=5cm∴⊙O的半径为5cm..AEBO9.在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.AE-CE=BE-DE.所以,AC=BDE.ACDBO10.已知:⊙O中弦AB∥CD.求证:AC=BD⌒⌒证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则AM=BM,CM=DMAM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒.MCDABON