二、定积分的分部积分法第四节不定积分一、定积分的换元法换元积分法分部积分法定积分换元积分法分部积分法定积分的换元法和分部积分法第五章一、定积分的换元法定理1.设函数单值函数满足:1),],[)(1Ct2)在],[上;)(,)(ba)(t)(t证:所证等式两边被积函数都连续,因此积分都存在,且它们的原函数也存在.是的原函数,因此有则)()(aFbF)]([F)]([F)(t)(t)(t)(t)(t则说明:1)当,即区间换为,时],[定理1仍成立.2)必需注意换元必换限,原函数中的变量不必代回.3)换元公式也可反过来使用,即))((tx令xxfbad)(或配元)(t)(dt配元不换限)(t)(t)(t)(t)(t)(t换元必换限))((tx令xxfbad)()(t)(t换元必换限)(t)(dt)(t)(t配元不换限;)(,)(ba例1计算.sincos205xdxx解令,cosxt2x,0t0x,1t205sincosxdxx015dtt1066t.61,sinxdxdt注:若不明显地写出新的变量,则定积分的上下限就不要变更.1022dttet计算21102102210212222eetdedttettt或21210210212eedueuututdtdu1022dttet解:例2.配元不换限换元必换限dxxx053sinsin计算例3.解:原式dxxx023cossindxxxdxxx2232023cossincossin54sin52sin52sinsinsinsin22520252232023xxxdxxdx配元不换限例4.计算解:令,sintax则,dcosdttax;0,0tx时当.,2tax时∴原式=2attad)2cos1(2202)2sin21(22tta0220ttdcos222xayxoya且换元必换限练习:计算解:令,12xt则,dd,212ttxtx,0时当x,4时x.3t∴原式=ttttd231212ttd)3(21312)331(213tt13;1t且换元必换限例5.证明为奇函数当,为偶函数当上连续,则在若)(0)(,)(2)(],[)(0xfxfdxxfdxxfaaxfaaa偶倍奇零证明:aaaadxxfdxxfdxxf00)()()(00)()(atxadttfdxxf令而adttf0)(adxxf0)(为奇函数当,为偶函数当)(0)(,)(20xfxfdxxfaaaaadxxfdxxfdxxf00)()()(即奇函数练习:计算解.11cos21122dxxxxx原式1122112dxxx11211cosdxxxx偶函数1022114dxxx10222)1(1)11(4dxxxx102)11(4dxx102144dxx.4单位圆的面积02002020cos1sin,)(sin2)(sin).2()(cos)(sin).1(]1,0[)(dxxxxdxxfdxxxfdxxfdxxfxf由此计算上连续,则有在若例6.证明:则设,2).1(tx0220)]2[sin()(sindttfdxxf2020)(cos)(cosdxxfdttf0)(sin)(dttft则令,).2(tx00(sin)(sin)2xfxdxfxdx即00)(sin)(sindtttfdttf00)][sin()()(sindttftdxxxf00)(sin)(sindxxxfdxxf利用上述结果,即得0202cos1sin2cos1sindxxxdxxxx02cos1)(cos2xxd0)arctan(cos2x)44(22402cos1sin6dxxxx(另解):例222222112dttttdtttsincossincos),(偶函数积分对称区间上奇01202dtttsincos20)(sinarctant04.42.)(;:002220tddxtdxdtxtx常用222212dtttttxsincos.)(412dxxf求)(.6xf设例02xexx0111xxcos412dxxf)(.解212dttftx)(21dxxf)(2001211dxxedxxxcos202012221221)(cosxdedxxx20012212xextan0421210eetan.tan2121214e练习dxxdxxdxxxdxxxnn20022311sin2sincoscos)2(451证明)计算(答案34)2(611)()(2020tx且令提示:二、定积分的分部积分法定理2.,],[)(,)(1baCxvxu设则ab证:)()()()(])()([xvxuxvxuxvxu)()(xvxuabxxvxuxxvxubabad)()(d)()()()(xvxuabbaxxvxud)()(上积分两端在],[bababababababavduuvudvdxuvuvdxvu或例1102100)3(arcsin)2(cos)1(dxedxxxdxxx计算解2cossinsinsin)1(0000xxdxxxxxd原式2222222)3(10101010102ttttttxtdtdxeedtetetdedtte原式12312)1(12)1(11216211arcsin)2(210212210222102210xxdxdxxxxx原式练习dxxxdxxx0241)sin()2(ln1)计算(答案46)2()12ln2(412)(例2设求解21,sin)(xdtttxf.)(10dxxxf因为ttsin没有初等形式的原函数,无法直接求出)(xf,所以采用分部积分法10)(dxxxf102)()(21xdxf102)(21xfx102)(21xdfx)1(21f102)(21dxxfx21,sin)(xdtttxf,sin22sin)(222xxxxxxf10)(dxxxf)1(21f102)(21dxxfx102sin221dxxx1022sin21dxx102cos21x).11(cos21,0sin)1(11dtttf.)2(,5)2(,3)2(,1)0(10dxxfxfff试计算已知解.2)(41)2(21)(41)(41)(41)(41)2(202020202010221tffdttftfttftddttftdxxfxtxdtdx例3例4证明的奇数为大于为正偶数1,3254231,22143231sin20nnnnnnnnnnxdxInn证nnnnnnnnInIndxxxnxdxxnxxxxdxdxI)1()1()sin1(sin)1(cossin)1(sincos)cos(sinsin22022202220120120故有但)递推得由(.1sin,232547612221222143652232212*20120011202xdxIdxIImmmmIImmmmImm的奇数为大于为正偶数1,3254231,22143231sin20nnnnnnnnnnxdxInn(*)12nnInnI20dcosxxn注意:证:令,22143231nnnnn为正偶数n为大于1的奇数,2xt则20dsinxxn022d)(sinttnxxtdttxtfdtdxxfxf000))(()()(连续,试证:如果例5右边左边,于是则证明:令分部积分xxxxxxxxttdttxtfdttftdttfxdttftdxxfxtdtxttdttdtdxxftftFdxxft0000000000))(()()()()()F(0)F()F()()()(,)()F(内容小结基本积分法换元积分法分部积分法换元必换限配元不换限边积边代限思考与练习1.提示:令,txu________d)(sindd0100ttxxx则ttxxd)(sin0100u100sinx100sin2.设解法1)(3xf解法2对已知等式两边求导,得解:3.右端,],[)(上有连续的二阶导数在设baxf)(af且试证baxfbxax)(d))((21abxfbxax)())((21xbaxxfbad)2)((21分部积分积分再次分部积分xxfbad)(abxfbax)()2(21=左端,0)(bf,)(的在它的定义域上是连续初等函数xf它的不定积,)(I一定存在分dxxf用初等函数但是却不一定能把I,表示出来例如.sin,,ln,sin221xexxxx,积不出来我们称这些函数不能说明它积不出来.的原函数不存在