1第十章PanelData模型第一步录入数据第二步分析数据的平稳性(单位根检验)第三步平稳性检验后分析路径选择第四步协整检验`第五步回归模型2第一步录入数据一请点实例数据二请点录入数据软件操作3实例数据录入企业投资需求模型数据:五家企业和三个变量的20个年度(1935-1954年)观测值的时间序列(数据略)5家企业:3个变量:GM:通用汽车公司I:总投资CH:克莱斯勒公司M:前一年企业的市场价值GE:通用电器公司(反映企业的预期利润)WE:西屋公司K:前一年末工厂存货和设备的价值US:美国钢铁公司(反映企业必要重置投资期望值)录入数据软件操作(EVIEW6.0)方式一File/New/WorkfileWorkfilestructuretype:Dated-regularfrequencyStartdate1935Enddate1954OKObjects/NewObject:TypeofObjectpoolOKCrossSectionIdentifiers:_GM_CH_GE_WE_USView/SpreadsheetView:i?m?k?方式二(方式是否正确,有待考证)File/New/WorkfileWorkfilestructuretype:BalancedPanelStartdate1935Enddate1954Numberofcross1OKCrossSectionIdentifiers:_GM_CH_GE_WE_USView/SpreadsheetView:i?m?k?45第二步分析数据的平稳性(单位根检验)请点说明请点软件操作结果点检验结果1结果26分析数据的平稳性(单位根检验)说明注:所有序列者要检验原:不稳定(Hadri除外,Hadri中原:稳定)目的:防止虚假回归或伪回归方法:相同根下:LLC、Breintung、Hadri不同根下:IPS、ADF-Fisher和PP-Fisher5模式:三种检验模式:既有趋势又有截距、只有截距、以上都无(对面板序列绘制时序图做出模式选择)。秩序:水平(level)、一阶差分、二阶甚至高阶差分直至序列平稳为止。备注:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。7分析数据的平稳性软件操作在Pool对象,View/UnitRootTest,输入相应的Pool序列名填写模式,先做序列图再选择填写秩序选择检验方法填写序列名右边所有栏目软件自动填写无需更改8例10.4中I?的水平变量的所有方法的单位根检验结果:各种方法的结果(除Breitung检验外)都接受原假设,I?存在单位根,是非平稳的。只有此处小于0.05,说明除此法外都认为非平稳9例10.4中I?的一阶差分变量的所有方法的单位根检验结果:各种方法的结果都拒绝原假设,所以可以得出结论:I?是I(1)的。所有P值均小于0.05,说明平稳10第三步平稳性检验后分析路径选择平稳性检验后若:变量之间是非同阶单整请点思路一序列变换变量之间是同阶单整请点思路二协整检验11思路一:变量之间是非同阶单整:序列变换◎变量之间是非同阶单整的指即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。◎对序列进行差分或取对数使之变成同阶序列若变换序列后均为平稳序列可用变换后的序列直接进行回归若变换序列后均为同阶非平稳序列,则请点思路二12思路二变量之间是同阶单整:协整检验请点协整检验说明请点软件操作结果判定请点123协整检验通过:请点因果分析.请点回归分析协整检验没通过:若均为2阶单整,则都取差分或都取对数生成新序列进行单位根检验否是1阶单整(取差分或对数后都会变成1阶单整),如是对新序列进行协整检验,如无法达成协整,分析终止。若均为1阶单整,直接全取差分或全取对数,进行回归分析13协整检验说明原:不存在协整面板数据的协整检验方法可以分为两大类,一类是建立在EngleandGranger二步法检验基础上的面板协整检验,具体方法主要有Pedroni检验和Kao检验;另一类是建立在Johansen协整检验基础上的面板协整检验。1.Pedroni检验2.Kao检验3.Johansen面板协整检验14Pool序列的协整检验※在EViews中打开pool对象,选择Views/CointegrationTest…,则显示协整检验的对话框。图10.6面板数据的协整检验的对话框协整检验操作15Pedroni检验:原假设:无协整关系此栏目下P值均小于0.05存在协整关系此栏目下P值均两个小于0.05存在协整关系一个大于0.05,不支持协整16表10.8Kao检验和Pedroni检验结果(滞后阶数由SIC准则确定)检验方法检验假设统计量名统计量值(P值)Kao检验H0:=1ADF-6.787326(0.0000)*Pedroni检验H0:=1H1:(i=)1Panelv-Statistic2.099652(0.044)*Panelrho-Statistic-3.415758(0.0012)*PanelPP-Statistic-5.991403(0.0000)*PanelADF-Statistic-7.835311(0.0000)*H0:=1H1:(i=)1Group-rho-Statistic-0.837712(0.2809)GroupPP-Statistic-6.990581(0.0000)*GroupADF-Statistic-7.194068(0.0000)*除此项外均支持协整17表10.8Johansen面板协整检验结果(选择序列有确定性趋势而协整方程只有截距的情况)原假设Fisher联合迹统计量(p值)Fisher联合-max统计量(p值)0个协整向量133.4(0.0000)*128.7(0.0000)*至少1个协整向量65.74(0.2266)65.74(0.2266)注:加“*”表示在5%的显著性水平下拒绝原假设而接受备择假设。上述检验结果检验的样本区间为1991-2003年,从表10.8和表10.9的检验结果可以看出,我国29个省市的城镇居民消费和收入的面板数据之间存在协整关系。支持协整18格兰杰因果检验(因果检验的前提是变量协整)。Eviews好像没有在POOL窗口中提供Grangercausalitytest,如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/MakeGroup),再来试试因果分析19一确定影响形式固定影响随机影响二确定模型形式形式一形式二形式三三估计方法说明四一二三确定后就可以进行模型最终的设定与估计(略:自已去完成)回归模型20一确定影响形式请点:说明请点:软件操作21一确定影响形式说明◎方法Hausman检验◎原:应建立随机效应模型◎步骤首先:建立随机效应回归其次:用Hausman检验该模型是否是随机效应模型iiiivuβxy22一确定影响形式软件操作第一步:建立建立随机效应回归◎POOL/ESTIMATE如右窗口点确定结果请点结果此处选randomiiiivuβxy由于自变量前系数不变,所以自变量填写在此处23第二步:Hausman检验原假设:应建立随机效应模型在软件的上一步分析的结果窗口(见左图)进行如下操作:◎View/◎Fixed/RandomEffectsTesting/◎CorrelatedRandomEffects-HausmanTest请点结果24中部地区模型的HausmanTest结果:由(10.3.68)式构造的中部地区模型的HausmanTest统计量(W)是0.29,p值是0.59,接受原假设:随机影响模型中个体影响与解释变量不相关,结论:可以将模型设定为随机模型。P值大于0.05,所以接受原假设:应建立随机效应模型25说明(1)模型有三种形式形式一:变系数模型形式二:固定影响模型形式二:不变参数模型(2)根据F检验确定上述三种形式之一请点(确定模型形式的F检验)二确定模型形式iiiiiuβxyiiiimuβxy*iiiuβxy26确定模型形式的F检验原假设:两个如下H1:H2:判定规则:接受假设H2则为不变参数模型(模型三),检验结束。拒绝假设H2,则检验假设H1。如接受H1,则模型为变截距模型(模型二)若拒绝H1,则模型为变参数模型(模型一)。构建统计量:请点F统计量Nβββ21N21Nβββ2127构建变参数模型得残差平方和S1并考虑其自由度请点构建变截距模型得残差平方和S2并考虑其自由度请点构建不变参数模型得残差平方和S3并考虑其自由度请点计算F2统计量获得S1,S2,S3后手工计算F2,F1,并查找临界值做出判定请点:判定规则请点判定实例)]1(),1)(1[(~))1(()]1)(1/[()(1132kTNkNFkNNTSkNSSF)]1(,)1[(~))1((])1/[()(1121kTNkNFkNNTSkNSSF假设检验的F统计量的计算方法28例10.5中系数和取何种形式可以利用模型形式设定检验方法来确定。(1)首先分别计算3种形式的模型:变参数模型、变截距模型和不变参数模型,在每个模型的回归统计量里可以得到相应的残差平方和S1=339121.5、S2=444288.4和S3=1570884。(2)按(10.2.7)式和(10.2.8)式计算F统计量,其中N=5、k=2、T=20,得到的两个F统计量分别为:F1=((S2-S1)/8)/(S1/85)=3.29F2=((S3-S1)/12)/(S1/85)=25.73利用函数@qfdist(d,k1,k2)得到F分布的临界值,其中d是临界点,k1和k2是自由度。在给定5%的显著性水平下(d=0.95),得到相应的临界值为:F2(12,85)=1.87F1(8,85)=2.049由于F21.87,所以拒绝H2;又由于F12.049,所以也拒绝H1。因此,例10.5的模型应采用变系数的形式。模型形式检验步骤:注要手工计算29iiiiiuβxy模型一变系数模型根据以前所做的影响效应填写◎POOL/ESTIMATE如右窗口点确定结果请点结果由于自变量前系数可变,所以自变量填写在此处30手工记下S1手工记下:自由度为N(T-K-1)31模型二:固定影响(FixedEffects)(ij,i=j)说明软件给出的固定影响分为:一总体均值二个体对总体的偏离iiiimuβxy*由于自变量前系数不变,所以自变量填写在此处◎POOL/ESTIMATE如右窗口点确定结果请点结果32记下S2记下:自由度为N(T-1)-K33附注:包含时期个体恒量的固定影响变截距模型ittiititmuβxy*3435模型三:不变参数模型(所有截面截距相同、系数相同)iiiuβxy由于自变量前系数不变,所以自变量填写在此处,截距也不变,在此填写C小心此处选:NONE点确定结果请点结果36所有的截面的系数相等,和将5个公司的数据接到一起,用OLS的估计结果相同。记下S3记下自由度为NT-(K+1)37(1)横截面的异方差与序列的自相关性是运用面板数据模型时可能遇到的最为常见的问题,此时运用OLS可能会产生结果失真,因此为了消除影响,对我国东、中、西部地区的分析将采用不相关回归方法(SeeminglyUnrelatedRegression,SUR)来估计方程。而对于全国范围内的估计来说,由于横截面个数大于时序个数,所以采用截面加权估计法(CrossSectionWeights,CSW)。(2)一般而言,面板数据可用固定效应(fixedeffect)和随机效应(randomef