第1页(共41页)初中数学直角坐标系提高题与常考题和培优题(含解析)一.选择题(共12小题)1.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3B.﹣3C.﹣4D.42.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)3.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0)B.(3,﹣3)C.(3,﹣1)D.(﹣1,3)5.对于任意实数m,点P(m﹣2,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5B.3C.﹣3D.﹣57.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()第2页(共41页)A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.59.如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2)C.(﹣3,﹣6)D.(﹣3,4)10.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)11.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定第3页(共41页)义:若b′=,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5),如果一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣1,)B.(﹣,﹣1)C.(,﹣1)D.(,1)12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3)C.(5,﹣3)D.(﹣5,3)二.填空题(共13小题)13.点P(3,﹣2)到y轴的距离为个单位.14.点P(x﹣2,x+3)在第一象限,则x的取值范围是.15.线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为.16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.17.将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.18.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.19.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点第4页(共41页)的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是.20.定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有个.21.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是;当走完第2016步时,棋子所处位置的坐标是.22.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.23.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.第5页(共41页)24.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.25.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.三.解答题(共15小题)26.在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)第6页(共41页)27.在如图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?28.求图中四边形ABCD的面积.29.在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.30.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立第7页(共41页)直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.31.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C(,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?32.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.第8页(共41页)33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.已知:如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动).(1)写出B点的坐标();(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.35.如图,某校七年级的同学从学校O点出发,要到某地P处进行探险活动,第9页(共41页)他们先向正西方向走8千米到A处,又往正南方向走4千米到B处,又折向正东方向走6千米到C处,再折向正北方向走8千米到D处,最后又往正东方向走2千米才到探险处P,以点O为原点,取O点的正东方向为x轴的正方向,取O点的正北方向为y轴的正方向,以2千米为一个长度单位建立直角坐标系.(1)在直角坐标系中画出探险路线图;(2)分别写出A、B、C、D、P点的坐标.36.已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.37.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积”为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.38.如图,在平面直角坐标系中,原点为O,点A(0,3),B(2,3),C(2,﹣3),D(0,﹣3).点P,Q是长方形ABCD边上的两个动点,BC交x轴于点M.点P从点O出发以每秒1个单位长度沿O→A→B→M的路线做匀速运动,同时点Q也从点O出发以每秒2个单位长度沿O→D→C→M的路线做匀速运动.当点Q运动到点M时,两动点均停止运动.设运动的时间为t秒,四边形OPMQ的面积为S.(1)当t=2时,求S的值;第10页(共41页)(2)若S<5时,求t的取值范围.39.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=.40.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…An,图形与y第11页(共41页)轴正半轴的交点依次记作B1(0,2),B2(0,6),…Bn,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…Cn,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…Dn,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:An,Bn,Cn,Dn;(3)请求出四边形A5B5C5D5的面积.第12页(共41页)初中数学直角坐标系提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2017•河北一模)已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3B.﹣3C.﹣4D.4【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.【点评】此题主要考查