统计计算与分析综合指标的计算与分析统计计算与分析的任务1、对经统计整理后的统计资料进行进一步地加工,编制计算各项指标、指数、发展速度和发展水平等(获得基础资料中没有的新信息)2、根据计算结果,利用各种分析方法(如综合指标法、指数法、推断法、相关与回归分析法等),揭示现象的数量特征、本质联系,阐明所研究现象的规律,进而对现象的发展趋势进行判断预测;3、估计这种判断的准确性,确定误差范围;4、撰写统计分析报告,发布研究结果,向有关部门提供信息服务、提出咨询或监督的意见和建议,以发挥统计的功能。进行统计分析的前提统计分析的目的是揭示现象的特征及其本质规律性为了这一目的,首先就要寻找能反映这些特征、规律的资料,这就是总体和个体的各种指标、指数等,这是进行统计分析的前提它包括综合指标、统计指数、时间数列等综合指标的计算与分析综合指标是反映社会经济现象总体数量特征的统计指标;它是将调查所得的大量反映总体单位数量特征的原始资料经整理加工和汇总之后得到的;统计综合指标有三大类:总量指标、相对指标和平均指标;需要有哪些统计指标,往往是在统计研究开始前,根据研究目的事先设计好的,所以在进行统计设计时,要有“统计指标体系设计”这一个环节;不同种类综合指标的作用各种不同类型的综合指标是从不同的角度来反映总体的数量特征的;将它们结合起来就可以使我们对总体的整个情况有全面的了解;总量指标是反映一定时间、地点、条件下社会经济现象总体规模或水平的综合指标;它表现为总体规模的总量的绝对数(或总量之间的绝对差数,即增加或减少数);也称为绝对指标;相对指标是反映社会经济现象之间的数量联系和对比关系(如结构、比例、强度、不同总体在同一时点和同总体在不同时点的比较、计划完成程度等)的综合指标;它是将两个有联系的统计指标对比求得的;是一个相对数;平均指标是反映社会经济现象某一数量标志的一般水平的综合指标;其表现形式为平均数,它可以粗略地“代表”总体各单位该标志的情况;标志变异指标还有一类指标,称为标志变异指标;它是为了衡量平均指标的“代表性”、即总体中各个体单位该标志的值同平均数之间的差异大小而设立的;从计算方法上看,该指标有的是绝对数,有的是相对数,有的是平均数,所以不单列出来;计算这类指标主要是统计推断的需要;总量指标总量指标是统计中最基本的指标,是计算相对指标和平均指标的基础;总量指标的值是由个体的相应数值“加总”得来的,所以只能应用于“有限总体”的情况;总量指标的数值随研究范围的大小而增减;总量指标的分类按反映的内容分:总体单位总量指标与总体标志总量指标按计量单位的不同分:实物指标(采用实物单位,如自然单位、度量衡单位、复合单位、标准实物单位等)、价值指标(以货币作为价值尺度)与劳动量指标(以劳动时间表示,如工时、工日等)按反映的时间状态分:时点指标与时期指标•时点指标与时期指标的不同特点时点指标:只能间断计数数值累加没有实际意义数值大小与时点间隔长短没有必然联系时期指标:可以连续计数各期数值可以累加,累加结果有实际意义数值大小与期间长短成正比单纯应用总量指标进行统计分析是有缺陷的!相对指标及其计算相对指标是一个相对数;可以是一种抽象化的“无名数”,如系数、倍数、成数、百分数等;也可以是有名数,如“次”(商品流转速度指标,是个单名数),人/平方公里(人口密度指标,是一个复名数)相对指标的种类1.结构相对数(部分与总体的比较)2.比例相对数(总体中一部分与另一部分的比较)3.比较相对数(同一时间一总体同另一总体的比较,即同类指标的空间比较)4.强度相对数(一总量指标同另一总量指标的比较)5.计划完成程度相对数(实际完成量同计划任务的比较)6.动态相对数(不同时间同一指标数值之间的比较)结构相对指标结构相对指标反映总体内部构成情况;常见的结构指标有产品合格率、废品率,学生出勤率、及格率,森林覆盖率,恩格尔系数(食品支出总额/消费总额)等;它是总体中某部分的数值与总体数值对比的比值,一般用百分数表示;计算公式为结构相对数=(总体某部分数值/总体数值)×100%注意:(1)同一总体的结构相对数之和必须为100%(或1),如产品合格率与废品率之和必须为1;(2)结构相对数中分子与分母的位置不能互换;(3)结构相对数的分子分母既可以是总体中某部分的单位与总体单位总量之比,也可以是总体中某部分的标志总量与总体标志总量之比;(4)作为分子的“某部分”必须是构成分母的“总体”中的一部分;示例:某市2008年的GDP为1841.61亿元,其中第一、二、三产业增加值分别为88.88亿元、826.43亿元、926.30亿元,计算各次产业增加值占GDP的比重。(4.83%、44.87%、50.30%)比例相对指标是同一总体中某一部分和另一部分数值对比的比值,是一个比数(或百分数),反映的是总体内各部分间的内在联系和比例关系;常见的比例相对指标有人中性别比、积累与消费的比例、固定资产与流动资产的比例等;计算方法为:比例相对数=总体中某一部分的数值/同一总体中另一部分的数值注意:(1)比例相对数计算时的分子分母必须同属一个总体;(2)分子和分母的位置可以互换;示例:某市2009年工业总产值为4230.83亿元,其中重工业产值为1130.03亿元,轻工业产值为3100.8亿元;计算该市轻重工业的比例;(2.74:1)比较相对指标它是同类指标在同一时间、不同空间对比的比值;一般用百分数或倍数表示;反映的是不同总体或不同单位之间的差异程度;分子和分母也可以互换;计算公式:比较相对数=某条件下的某项指标数值/另一条件下的同项指标数值示例:甲乙两公司2008年的商品销售额分别为560亿元和320亿元,计算比较相对数(1.75)强度相对指标是两个性质不同而又有联系的总量指标对比的结果;一般为有名数(单名数或复名数,也可以是无名数—百分数、千分数);如人均国民收入、资金利税率、人口密度、人口出生率等;有正指标和逆指标之分;计算公式:强度相对数=某一总量指标数值/另一有联系的总量指标数值动态相对指标是同一社会经济现象在不同时期两个数值的对比结果;反映的是该现象在时间上的发展变化方向和程度,即发展速度;一般以百分数表示;计算公式:动态相对数=(报告期数值/基期数值)×100%公式中的报告期是指要研究或计算的时期;基期是作为比较基础的时期,通常以前期或上年同期为基期,也可以以历史上某一重要时期为基期;公式中的分子和分母不能互换;计划完成程度相对指标(1)是计划期内实际完成数与计划完成数的比值;一般用百分数表示,又称计划完成百分数;计算公式:计划完成程度相对数=(实际完成数/计划完成数)×100%计划指标有绝对数(总量指标)、相对数(相对指标)和平均数(平均指标)这三种不同的形式,所以具体计算时也分不同的情况:根据绝对数、相对数、平均数来计算计划完成程度相对数;计划完成程度相对指标(2)一、根据绝对数计算计划完成程度相对数,又分两种情况:1.当实际完成数和计划完成数属同一时期,且时期的长度相等时,计划完成程度=(实际完成数/计划规定数)×100%2.当实际完成数与计划数的相对时期长度不相等,实际完成数是分阶段统计的,则计划执行进度=(报告期初至报告期止累计实际完成数/计划期总数)×100%二、根据相对数(如计划成本降低率、计划劳动生产率等)计算计划完成程度相对数,有两种方法:1.对比法(根据提高或降低率计算计划完成程度相对数);公式为:计划完成程度=[(1或100%±实际提高或降低的百分数)/(1或100%±计划提高或降低的百分数)]2.差额法:是用实际提高或降低率与计划提高或降低率相减的差额来说明计划完成的程度,其结果一般用百分点表示;注意:由这两种方法计算所得的结果是不同的,说明的问题也不同;对比法的结果表示的是计划完成的程度;而差额法的结果只表明是不是完成了计划,不能说明计划完成的程度;三、根据平均数计算计划完成程度相对数计算公式为:计划完成程度=(实际平均数/计划平均数)×100%.平均指标平均指标代表了同质总体中各个体单位某一数量标志值的一般水平平均指标的作用:可用于大致估计和推断总体或个体的情况;可用于分析现象间的依存关系,揭示现象发展变化的规律;平均指标最重要的计算或应用原则:只有在同质总体中才能计算或应用平均指标;平均指标的种类算术平均数调和平均数几何平均数众数中位数算术平均数的计算(1)简单算术平均数的计算(用于未分组资料)其中:为算术平均数为总体各单位的标志值为总体单位数为求和符号nxnxxxxn21x).,2,1(nixin算术平均数的计算(2)加权算术平均数的计算(用于分组资料)在已知各组标志值(或组中值)和各组次数时其中为加权算术平均数为各组的标志值或组中值为各组的次数或频数为求和符号fxfffffxfxfxxnnn212211),,2,1(nixi),,2,1(nifix在已知各组标志值(或组中值)和各组比重时的加权算术平均数的计算公式)(22112211212211ffxffxffxffxffxfxfxfxfffffxfxfxxnnnnnnn组距数列的组中值计算认为各组的标志变化均匀,用各组标志的中间值(组中值)代替其“平均值”闭口组组中值计算:组中值=(下限值+上限值)/2开口组:最小组组中值=(假定下限值+上限值)/2其中,假定下限值=上限值-邻组组距最大组组中值=(下限值+假定上限值)/2其中,假定上限值=下限值+邻组组距算术平均数的性质标志值与算术平均数的正、负离差和相等(总离差和为0)在所有的平均数中,各标志值与算术平均数离差的平方和为最小计算简便,易于理解和掌握,应用广泛但算术平均数易受极端值的影响(“被平均”)在开口组距数列的情况下,组中值的计算存在很大的假定性调和平均数的计算调和平均数是标志值的倒数的算术平均数的倒数简单调和平均数的计算xnnxxxHn1111121加权调和平均数的计算令代表各组的标志总量(即各组的权数)则加权调和平均数的计算公式为加权调和平均数是加权算术平均数的变形在已知各组的标志值和标志总量,但不知各组的次数时,可运用加权调和平均数来计算平均值调和平均数也存在着和算术平均数同样的问题,且当有一变量值为0便无法计算xfmxmmxmxmxmmmmHnnn221121xfxfxxfxfxmmHxmf几何平均数的计算几何平均数主要用于计算平均比率和平均速度,它是个变量值连乘积的次方根简单几何平均数的计算公式,其中为连乘符号加权几何平均数的计算公式几何平均数的应用范围有限;且当被平均的变量中有值为0或负数时,就无法运用nnnnnxxxxG21nfffnffxxxxGn2121中位数及其计算方法将总体单位的标志值按大小顺序排列,位于中间位置的单位的标志值就是中位数未分组数列中位数的计算:将标志值按大小顺序排列,按公式确定中位数的位次,即可找出中位数当为奇数时,为整数,按此数找中位数的位次并确定中位数的值;当为偶数时,为分数,可取紧邻该分数的两个位次的标志值的平均值为中位数2/)1('nnn'nn'n已分组数列中位数的计算单项数列:按公式确定中位数的位次;根据位次确定中位数;组距数列:按公式确定中位数的位次;根据位次确定中位数所在组;根据下限公式或上限公式确定中位数的值2f2f上限公式与下限公式上限公式:下限公式:在以上公式中,为中位数,为中位数所在组的下限,为中位数所在组的上限,为中位数组的次数,为总次数,为中位数所在组的组距,为中位数所在组以下的累积次数,为中位数所在组以上的累积次数;ifSfUMmme12ifSfLMmme12eMLUfmf1mS1m