平面向量坐标运算反思平面向量是中学数学的主要部分属于基础性,方法性的内容,是研究几何图形和几何变换的工具,在解析几何中具有重要的作用.而平面向量的坐标运算,又是平面向量内容里面的重要部分,它是对平面向量基本定理的进一步深化.因此,我在上完这节课后,有很多反思的地方,现与大家分享!向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。向量的坐标表示,实际是向量的代数表示。引入向量的坐标表示可以使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.而平面向量的坐标运算是常考的知识点,运用向量方法解决解析几何和立体几何中的有关知识,有时候显的非常方便.通过平面向量的坐标运算,我们可以培养学生的归纳、猜想、演绎能力,通过代数方法解决几何问题,提高学生用数形结合思想解决问题的能力。本节的教学重点是:平面向量的坐标运算本节的教学难点是:对平面向量共线的坐标表示的理解二、课程内容设计1、平面向量得坐标运算本部分内容比较简单,直接运用向量在基底下的表示形式讲解即可.然后进行小结,然后再让学生做4道练习;2、平面向量共线的坐标表示有向量共线的判定定理:,将两向量用坐标表示,消元,得到共线的坐标表示,然后比较两式的优缺点,并告诉学生消元的时候不能直接两式相除的理由,最后再通过练习强化.最后通过边讲边练,让学生充分动手,动脑,动眼达到掌握本节内容的目的。但是,在课程内容设计上,我把平面向量的坐标运算和平面向量共线的坐标运算放一起讲解了。课后反思,内容过于大了,一方面学生在接受上有一定的困难,另一方面在细节问题上就很难把握的好,一节课45分钟,在这么短的时间内让学生掌握住如此多的知识,难度很大,同时,一味地赶进度,带来的直接后果就是学生学而不精,对深层的问题,没有实质性的认识,只会死记公式,做原题,对于变形题目,学生仍然无从下手。三、学生水平分析本班学生,通过前面几次考核,大部分学生的知识基础和接受的能力还是可以的,20%的学生是很聪明的,通过自己看书,能够基本掌握本节内容,30%的学生在课堂上能够跟上我的思路,通过讲解,也能很快掌握,30%的学生勉强能跟上我的思路,但需要时间消化,剩下20%的学生,如果不预习课本,基本上上课很难听懂,即使提前预习了,也不一定能跟的上.事实证明:我对本班学生的分析还是很不到位的,学生在接受新知识方面,大部分学生还是有一定困难的.1、课程引入上课之前,我已经让学生提前预习,因此,我个人认为本节内容,大部分学生都能懂,对平面向量的运算法则,学生再比较数的运算,能很好的理解.因此,在课堂引入过程中,直接预练,找出问题,充分展示,达到很好效果.如此教学,学生能很快掌握住平面向量坐标的运算法则,,学生虽然能很快记住这种运算,但却不明白是如何得来了,这是教学的一个失误.2、例题处理在处理例题练习上,我高估了学生的水平,对学生的认知能力没有一个清楚的认识,在应该点评的地方却未做点评,导致学生虽然知道错了,却不知道错在何处,下次再做到这种题型,还是很有可能出现问题.例二中.已知平行四边行A.B.C顶点,则点D的坐标为.这个小题,我在下面巡视学生做的情况时,发现有一部分学生做错,都是很典型的错误,小题有学生得到两个答案,为了赶进度,我只是简单地对了答案,并没有把详细的解题过程写出来,导致的直接结果就是学生仍然不明白.反思后觉得这两个小题应该详细的讲解,以免学生以后出现类似的问题,同时要对学生的认知水平有个清晰的认识.在平面向量共线问题中,教材直接给出结果推理过程中,学生中肯定存在直接两式相除的,这样就可以引导学生,相除的时候应该注意什么,从而得出分类讨论,进一步把分类讨论思想灌输给学生,以上3题,是让学生到黑板上做的,我只让学生写了答案,并没给出过程,这是一个失误.在教学的过程中,学生做题的过程才是重要的,对于第3题,我只是简单的提示了一下,仍然是高估了学生,有一部分学生不明白为什么只有一个答案。3、发挥学生主观能动性在解题的过程中,应该充分发挥学生的主观能动性,学生的思维是灵活的,只要给他一丝春风,他就会给你一片灿烂的花园.4、对学生能力估计不足在课堂教学之前,做为教师,我应该对学生有个充分的估量,在这些容易错的地方,学生会出现那些错误,学生会用什么方法解决此题,我应该事先有个充分的估量,不至于课堂教学中,出现我没预料到的情况,造成教学的被动。总之,在本节课的教学反思中,我学到了很多东西.作为教师,我们只是组织者,推进者和指导者,我们应该把更多的主动权交给学生,让学生充分发挥自己的主观能动性,去创造奇迹,让他们的思维更灵活,情感升华更彻底,知识的获得将更完善