抽样技术在工厂的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

抽样检验技术在工厂的应用1抽样检验概论1.1抽样概述:抽样:通过研究总体中的样本获得有关总体某些特性的一种系统的统计方法。抽样大致分为二个方面:验收抽样和调查抽样,在许多场合,“验收抽样”一词常以“抽样检验”代替。1.1.1抽样检验:利用从批或过程中随机抽取和检验样本的结果,决定是否接受这批产品的活动。抽样检验一般按制定的抽样方案实施。优点:节省时间、费用、劳力。当产品检验包含破坏性试验时,抽样是获取信息的唯一途径。质量管理的历史演变统计抽样检验是相对于全数检验提出的。可分3个阶段:1.质量检验(20世纪初时采用)全数检验,工业不发达,产出量小。军工业推动了检验手段的研究工作。随工业技术的革新,产出量成倍增加,全数检验已不适合。并且针对破坏性检验、流程性材料亦不适合(如炮弹和啤酒)。2.统计质量控制(20世纪40年代提出)是以数理统计为基础的抽样检验,可针对产品和过程:a)过程:分析过程是否具有能力,一般是QA的工作范畴;b)产品:判断合格与否,由QC实现,并普遍采用GB/T2828.1-2003(计数调整型抽样检验方案)3.全面质量管理(20世纪60年代提出)加入了许多科学管理方法,如TQM、ISO、TPM、6σ…,并认为统计质量控制是不可缺少的部分。产品的分类产品:过程输出的结果。注1:有下述四种通用的产品类别:—服务(如运输);—软件(如计算机程序);—硬件(如发动机机械零件);—流程性材料(特点是工序间连贯,成均匀性,如润滑油)。许多产品由不同类别的产品构成,这种产品称为服务、软件、硬件或流程性材料取决于其主导成分。例如:外供产品“汽车”是由硬件(如轮胎)、流程性材料(如燃料、冷却液)、软件(如:发动机控制软件、驾驶员手册)和服务(如:销售人员所做的操作说明)所组成。注2:服务是在供方和顾客接触面上需要完成的至少一项活动的结果,并且通常是无形的。服务的提供可涉及,例如:—在顾客提供的有形产品(如维修的汽车)上所完成的活动;—在顾客提供的无形产品(如退税准备所需的收入说明)上所完成的活动;—无形产品的交付(如知识的传授);—为顾客创造氛围(如在宾馆和饭店)。软件由信息组成,通常是无形产品并可以方法、记录或程序的形式存在。硬件通常是有形产品,其量具有计数的特性。流程性材料通常是有形产品,其量具有连续的特性。硬件和流程性材料经常被称之为货物。注3:质量保证主要关注预期的产品。QA与QC质量保证的由来:在50年代,美国的军方在全国提出了质量保证要求。后来成为Micshofutcdantup9858A标准;作为对军火质量的要求。因为按常规的质量检验方式,发现军火质量有问题时,退货重新生产已为时太晚。定义:QC(QualityControl)/质量控制:质量管理的一部分,致力于满足质量要求。QA(QualityAssurance)/质量保证:质量管理的一部分,致力于提供能满足质量要求会得到满足和信任。区别与联系:QC:为了达到规定的质量要求而展开的一系列活动。主要关注的是过程的结果——产品。一般以质量检验为主要活动。QA:主要关注预期的产品。必须有效地实施质量控制,在此基础上才能提供质量保证。1.1.2统计抽样检验的特性基本特性:科学性、经济性和必要性科学性:应用了数理了统计方法经济性:只需从批中抽取很少一部分产品进行检验必要性:现代化生产的特点是产量大,速度快统计抽样检验虽然有很多优点,但也有一些不足。统计抽样检验流程抽样检验可分为:1.百分比抽样检验:批量不同时,相同质量可能有不同的判断结果。2.统计抽样检验:N批产品n样本d不合格品随机抽取全检43210批产品合格批产品不合格d≤ACd≥Re比较判断准则(Ac,Re)N,Ac,Re用数理统计的方法来确定不足:批产品合格中可能包括不合格品,反之批产品不合格中可能包括合格品。全检不能被否定,全检仍适用于价值较大,后果影响严重的产品。如热水器、汽车等1.1.3统计抽样检验的发展历程统计抽样检验方法始于上世纪四十年代1949年,美国国防部JAN-STD-1051950年,美国国防部MIL-STD-105A1957年,美国国防部颁布了计量抽样标准,MIL-STD-4141958年,MIL-STD-105A被MIL-STD-105B取代1961年,美国军用标准MIL-STD-105C取代MIL-STD-105BJIN是陆军和海军标准MIL是美国军标美国贝尔实验室技术员“道吉”和“罗米格”是创造者,在1929年发表《一种抽样方法》。1941年被实际应用,并修改为《一次抽样和二次抽样检查表》,针对计数产品。休哈特在1924年提出控制图理论(SPC),在四十年代得到应用。1949年,首次将计数调整型的《一次抽样和二次抽样检查表》作为标准1.1.3统计抽样检验的发展历程1960~1962年,由美、英、加三国抽样专家共同组成ABC工作组,在全面修订105C的基础上研制出一个适合三这个国家军品和民品抽样检验标准。在这三个国家给予不同的代号:美国:MIL-STD-105D加拿大:105-GP-1(民)、CA-G115(军)英国:BS-9001(民)、GEF-131-A(军)1973年,MIL-STD-105D被IEC(国际电工委员会)采用,命名为IEC410,1974年ISO(国际标准委员会)命名为ISO2859。我国已发布了20余项统计抽样检验国家标准,主要有GB/T2828(计数型)和GB/T6378(计量型)等。实用抽样检验国家标准名录1.1.4统计抽样检验的分类1.1.4.1按统计抽样检验的目的的分类预防性抽样检验(过程抽样检验、SPC)验收性抽样检验(抽样检验过程)监督抽样检验(第三方,政府主管部门、行业主管部门如质量技术监督局的抽样检查——爆光)1.1.4.2按单位产品的质量特征分类计数抽样检验①计件:针对整体②计点:一般适用产品外观,如布匹上的瑕疵计量抽样检验:有具体的物理量(9.9mm,10.0mm)1.1.4.3按工序流程分类IQC、IPQC(可再分:首检、巡检、转序检验)、FQC、OQC、驻厂QC1.1.4.4按检验人责任分类:专检、自检、互检1.1.4.5按检验场所分类:工序专检和线上检验、外发检验、库存检验、客处检验1.1.4.6按抽取样本的次数分类一次抽样检验(只做一次抽样的检验)二次抽样检验(最多抽样两次的检验)多次抽样检验(最多5次抽样的检验)序贯抽样检验(事先不规定抽样次数,每次只抽一个单位产品,即样本量为1,据累积不合格品数判定批合格/不合格还是继续抽样时适用。针对价格昂贵、件数少的产品可使用)1.1.4统计检验的分类1.1.4.7按是否调整抽样检验方案分类调整型抽样方案特点:①有转移规则(正常、加严、放宽)②一组抽样方案(一次、二次、多次)③充分利用产品的质量历史信息来调整,可降低检验成本非调整型抽样方案特点:只有一个方案,无转移规则1.2计数抽样检验的基本原理1.2.1计数抽样检验方案抽样方案是一组特定的规则,用于对批进行检验、判定,计数抽样方案包括样本量n,判定数组Ac和Re。在计数抽样检验中,根据抽样方案对批作出判定以前允许抽取样本的个数,分为一次、二次、多次和序贯等各种类型的抽样方案。GB/T2828.1是计数的一次、二次、多次的抽样方案。不包括序贯。1.2.1.1一次抽样方案简记为(nAc,Re)从批中抽取n个单位产品对样品逐个进行检验,发现d个不合格品若d≤Ac,接收该批若d≥Re,拒绝该批Re=Ac+11.2.1.2二次抽样方案简记为(n1,n2Ac1,Re1;Ac2,Re2)1.2.1.3多次抽样方案:与二次抽样方案类似Re2=Ac2+1抽取和检验样本量为n1的第一样本若d1≤Ac1,接收若Ac1<d1<Re1若d1≥Re1,不接收抽取和检验样本量为n2的第二个样本若d1+d2≤Ac2,接收若d1+d2≥Re2,不接收1.2.2计数抽样检验方案的OC曲线1.2.2.1OC曲线的概念设采用抽样方案(nAc,Re)进行抽样检验,用Pa(p)表示当批不合格率为p时抽样方案的接收概率:Pa(p)=∑P(X=d)称所给定的函数Pa(p)为抽样方案(nAc,Re)的抽检特性函数,简称OC函数。曲线称为抽样方案的抽检特性曲线。简称OC曲线。也称接收概率曲线。每个抽样方案,都有它特定的OC曲线。Acd=0接收可能性的大小1.2.2.1OC曲线的概念设N:批量抽样方案为:nAc,ReP:产品不合格品率当P=0时,肯定接收当P=1时,肯定不接收当0<p<1时,可能接收也可能不接收X:表示抽取n件产品可能发现的不合格品数Pa(p)=P(x)(X≤Ac)当X(随机变量)服从超几何分布,P(X=x)Pa(p)=P(x)=∑CDxCN-Dn-xCNnN:批量n:抽样量D(np):批中不合格数X:样本中抽到不合格品数(x可等于0,1,2,……,D)Acd=01.2.2.2OC函数的计算对于无放回抽样,X服从超几何分布:公式见上页。例:N=50,D=3,(n=5,Ac=1),p=6%,求其接收概率?答:Pa(p)=p(x≤1)=p(x=0)+p(x=1)=+=0.724+0.253=0.98C30C475C505C505C31C474Cnk=n!k!(n-k)!二项分布有放回抽样,X服从二项分布:Pa(p)=p(X=x)=∑Cnxpx(1-p)n-x在实际中大多数采用无放回抽样,当0.1时,可以用二项分布去近视超几何分布。(如N=500,n=50,利用超几何分布很难计算,可以采用二项式分布计算)例:N=300,(n=20,Ac=1),p=1%,求接收概率?答:Pa(p)=p(x≤Ac)=p(x=0)+p(x=1)=C200(0.01)0(1-0.01)20-0+C201(0.01)1(1-0.01)20-1=98%Nnp:批中不合格品率n:样本量X:样本中抽到不合格品数(x=0,1,2,……,n)Acd=0泊松分布当n≥10,p≤0.1时产品批的单位产品所含平均不合格数为λ,抽样样本为n,若样本的不合格数x(x=0,1,2……λ>0),出现的概率为泊松分布。P(X=x)=∑e-λ当p为每百单元产品不合格数时一定要采用泊松分布.λxx!λ=np计数抽样包括:1.计点(不合格数)——泊松分布2.计件(不合格品数)——“超几何分布”或“二项式分布”Acd=0泊松分布例:有钢球10万个,进行外观检验,方案(n=100,Ac=15),p=10%,求接收概率?λ=np=100*10%=10Pa(p)=p(x≤Ac)Pa(p)=p(x≤15)=p(x=0)+p(x=1)+……p(x=15)=e-10+e-10+……+e-10=0.9511000!1011!101515!1.2.2.3OC曲线的分类理想OC曲线:p≤p0时,Pa(p)=1;p>p0时,Pa(p)=01.2.2.3OC曲线的分类0≤P≤10≤Pa(p)≤1当p1<p2时,有Pa(p1)>Pa(p2)接收概率是P的函数,当P大时接收概率小,所以引出OC曲线pPa(p)也称L(p)11思考题:百分比抽样为什么不合理?百分比抽样方案的评审例:供方有批量不同但批质量相同(P=5%)的三批产品交检,均按10%抽取样品检验,于是可得到下列三种方案:①N=900,n=90,A=0②N=300,n=30,A=0③N=90,n=9,A=0.OC曲线如图所示:从OC曲线就可看出,在批质量相同的情况下,批量N越大,L(p)越小,方案越严;而N越小,L(p)越大,方案越松。1.2.2.3OC曲线的分类如已知N=1000,(n=50,Ac=1),可根据二项式分布计算。Pa(p)=p(x≤Ac)(x是抽取50件发现的不合格品数)=p(x=0)+p(x=1)=C500p0(1-p)50+C501p1(1-p)49P0.000.050.010.020.040.050.10.21Pa(p)10.97370.91060.73580.41450.27940.03370.0002050,150,0每个抽样方案都有特定的OC曲线,OC曲线L(P)是随批质

1 / 95
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功