2020/2/31projectsofDr.Hao《化工原理》PrinciplesofChemicalEngineering2020/2/3projectsofDr.Hao2第二章气体吸收GasAbsorption2020/2/3projectsofDr.Hao3概述(Introduction)•利用混合气体中各组分(component)在液体中溶解度(solubility)的差异而分离气体混合物的单元操作称为吸收。吸收操作时某些易溶组分进入液相形成溶液(solution),不溶或难溶组分仍留在气相(gasphase),从而实现混合气体的分离。•气体吸收是混合气体中某些组分在气液相界面上溶解、在气相和液相内由浓度差推动的传质过程。吸收剂气体yx界面气相主体液相主体相界面气相扩散液相扩散yixi2020/2/3projectsofDr.Hao4概述(Introduction)•吸收质或溶质(solute):混合气体中的溶解组分,以A表示。•惰性气体(inertgas)或载体:不溶或难溶组分,以B表示。•吸收剂(absorbent):吸收操作中所用的溶剂,以S表示。•吸收液(strongliquor):吸收操作后得到的溶液,主要成分为溶剂S和溶质A。•吸收尾气(dilutegas):吸收后排出的气体,主要成分为惰性气体B和少量的溶质A。•吸收过程在吸收塔中进行,逆流操作吸收塔示意图如右所示。吸收塔混合尾气(A+B)吸收液(A+S)吸收剂(S)吸收尾气(A+B)2020/2/3projectsofDr.Hao5概述(Introduction)一、吸收操作的用途:•(1)制取产品用吸收剂吸收气体中某些组分而获得产品。如硫酸吸收SO3制浓硫酸,水吸收甲醛制福尔马林液,用水吸收氯化氢制盐酸等。•(2)分离混合气体吸收剂选择性地吸收气体中某些组分以达到分离目的。例如石油馏分裂解生产出来的乙烯、丙烯,还与氢、甲烷等混在一起,可用分子量较大的液态烃把乙烯、丙烯吸收,使与甲烷、氢分离开来。•(3)气体净化一类是原料气的净化,即除去混合气体中的杂质,如合成氨原料气脱H2S、脱CO2等;另一类是尾气处理和废气净化以保护环境,如燃煤锅炉烟气,冶炼废气等脱除SO2,硝酸尾气脱除NO2等。2020/2/3projectsofDr.Hao6概述(Introduction)二、吸收操作的分类•物理吸收(physicalabsorption):吸收过程溶质与溶剂不发生显著的化学反应,可视为单纯的气体溶解于液相的过程。如用水吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、用洗油吸收芳烃等。•化学吸收(chemicalabsorption):溶质与溶剂有显著的化学反应发生。如用氢氧化钠或碳酸钠溶液吸收二氧化碳、用稀硫酸吸收氨等过程。化学反应能大大提高单位体积液体所能吸收的气体量并加快吸收速率。但溶液解吸再生较难。•单组分吸收:混合气体中只有单一组分被液相吸收,其余组分因溶解度甚小其吸收量可忽略不计。•多组分吸收:有两个或两个以上组分被吸收。•溶解热:气体溶解于液体时所释放的热量。化学吸收时,还会有反应热。•非等温吸收:体系温度发生明显变化的吸收过程。•等温吸收:体系温度变化不显著的吸收过程。2020/2/3projectsofDr.Hao7本章以分析单组分的等温物理吸收为重点,以便掌握最基本的原理。•气体吸收是物质自气相到液相的转移,这是一种传质过程。•混合气体中某一组分能否进入溶液里,既取决于该组分的分压,也取决于溶液里该组分的平衡蒸汽压。如果混合气体中该气体的分压大于溶液的平衡蒸汽压,这个组分便可自气相转移至液相,即被吸收。由于转移的结果,溶液里这个组分的浓度便增高,它的平衡蒸汽压也随着增高,到最后,可以增高到等于它在气相中的分压,传质过程于是停止,这时称为气液两相达到平衡。•反之,如果溶液中的某一组分的平衡蒸汽压大于混合气体中该组分的分压,这个组分便要从溶液中释放出来,即从液相转移到气相,这种情况称为解吸(或脱吸)。•所以根据两相的平衡关系可以判断传质过程的方向与极限,而且,两相的浓度距离平衡愈远,则传质的推动力愈大,传质速率也愈大。•吸收操作的分析,应该从气液两相的平衡关系与传质速率关系着手,本章各节即如此展开讨论。2020/2/3projectsofDr.Hao8气液两相的接触方式连续接触(也称微分接触):气、液两相的浓度呈连续变化。如填料塔。溶剂b级式接触a微分接触图9-2填料塔和板式塔气体溶剂气体级式接触:气、液两相逐级接触传质,两相的组成呈阶跃变化。如板式塔。散装填料塑料鲍尔环填料规整填料塑料丝网波纹填料2020/2/3projectsofDr.Hao9蒸馏与吸收操作对比•蒸馏改变状态参数产生第二相,吸收从外界引入另一相形成两相系统;•蒸馏直接获得轻、重组分,吸收混合液经脱吸才能得到较纯组分;•蒸馏中气相中重组分向液相传递,液相中轻组分向气相传递,是双相传递;吸收中溶质分子由气相向液相单相传递,惰性组分及溶剂组分处于“停滞”状态。2020/2/3projectsofDr.Hao10第一节气—液相平衡2––1––1气体的溶解度•气体吸收的平衡关系指气体在液体中的溶解度。•如果把氨气和水共同封存在容器中,令体系的压力和温度维持一定,由于氨易溶于水,氨的分子便穿越两相界面进入水中,但进到水中的氨分子也会有一部分返回气相,只不过刚开始的时候进多出少。水中溶解的氨量越多,浓度越大,氨分子从溶液逸出的速率也就越大,直到最后,氨分子从气相进入液相的速率便等于它从液相返回气相的速率,氨实际上便不再溶解进水里,溶液的浓度也就不再变化,这种状态称为相际动平衡,简称相平衡或平衡。2020/2/3projectsofDr.Hao11气体的溶解度•在温度和压力一定的条件下,平衡时的气、液相组成具有一一对应关系。•平衡状态下气相中溶质的分压称为平衡分压或饱和分压,与之对应的液相浓度称为平衡浓度或气体在液体中的溶解度。这时溶液已经饱和,即达到了它在一定条件下的溶解度,也就是指气体在液相中的饱和浓度,习惯上以单位质量(或体积)的液体中所含溶质的质量来表示,也表明一定条件下吸收过程可能达到的极限程度。•在一定温度下达到平衡时,溶液的浓度随气体压力的增加而增加。如果要使一种气体在溶液中里达到某一特定的浓度,必须在溶液上方维持较高的平衡压力。•气体的溶解度与温度有关,一般来说,温度下降则气体的溶解度增高。2020/2/3projectsofDr.Hao12溶解度曲线:在一定温度、压力下,平衡时溶质在气相和液相中的浓度的关系曲线。例:图2-2,2-3,2-4。溶解度/[g(NH3)/1000g(H2O)]1000500020406080100120pNH3/kPa50oC40oC30oC20oC10oC0oC120溶解度/[g(SO2)/1000g(H2O)]250200020406080100pSO2/kPa1501005012050oC40oC30oC20oC10oC0oC在相同条件下,NH3在水中的溶解度较SO2大得多。用水作吸收剂时,称NH3为易溶气体,SO2为中等溶解气体,溶解度更小的气体则为难溶气体(如O2在30℃和溶质的分压为40kPa的条件下,1kg水中溶解的质量仅为0.014g)。2020/2/3projectsofDr.Hao132––1––2亨利定律(Henry’slaw)当总压不太高时,一定温度下的稀溶液的溶解度曲线近似为直线,即溶质在液相中的溶解度与其在气相中的分压成正比。式中:p*——溶质在气相中的平衡分压,kPa;x——溶质在液相中的摩尔分数;E——亨利系数,kPa。Exp*——亨利定律亨利系数的值随物系的特性及温度而异;物系一定,E值一般随温度的上升而增大;E值的大小代表了气体在该溶剂中溶解的难易程度;在同一溶剂中,难溶气体E值很大,易溶气体E值很小;E的单位与气相分压的压强单位一致。2020/2/3projectsofDr.Hao14亨利定律(Henry’slaw)当气、液相溶质浓度用其它组成表示法表示时,通过浓度换算可得其它形式的亨利定律。常用的形式有y*——与组成为x的液相呈平衡的气相中溶质的摩尔分数;c——溶质在液相中的摩尔浓度,kmol/m3;m——相平衡常数;H——溶解度系数;kmol/(m3kPa);mxy*cHp1*三个比例系数之间的关系:PEmEcHm式中cm为溶液的总浓度(kmol/m3)。对于稀溶液,因溶质的浓度很小,因此cm=/Ms,其中为溶液的密度,Ms为溶剂的摩尔质量。smMc2020/2/3projectsofDr.Hao15亨利定律(Henry’slaw)在低浓度气体吸收计算中,通常采用基准不变的摩尔比Y(或X)表示组成。以摩尔比表示组成的相平衡关系X——溶质在液相中的摩尔比浓度;Y*——与X呈平衡的气相中溶质的摩尔比浓度。当m趋近1或当X很小时yyBAY1的摩尔数气相中惰气的摩尔数气相中溶质xxSAX1的摩尔数液相中溶剂的摩尔数液相中溶质XmmXY)1(1*mXY*2020/2/3projectsofDr.Hao162––1––3吸收剂的选择•吸收剂性能的优劣,是决定吸收操作效果是否良好的关键。如果吸收的目的是制取某种溶液作成品,例如用HCl气生产盐酸,吸收剂只能用水,自然没有选择的余地,但如果目的在于把一部分气体从混合物中分离出来,便应考虑选择合用的吸收剂问题。•溶解度大吸收剂的选择主要考虑的是溶解度,溶解度大则吸收剂用量少,吸收速率也大,设备的尺寸便小;•选择性好很显然,吸收剂对溶质气体的溶解度既要大,对混合气体中其他组分的溶解度却要小或基本上不溶,这样才能进行有效的分离,满足这一要求称为选择性好;•挥发度要小吸收剂的挥发度要小,即在操作温度下它的蒸汽压要低,经过吸收后的气体在排出时,往往为吸收剂蒸汽所饱和,吸收剂的挥发度高,其损失量便大。•此外所选用的溶剂尽可能满足无腐蚀性,粘度小,无毒,不燃,价廉易得等条件。2020/2/3projectsofDr.Hao17第二节传质机理与吸收速率•平衡关系只能回答混合气体中溶质气体能否进入液相这个问题,至于进入液相速率大小,却无法解决,后者属于传质的机理问题。本节的内容是结合吸收操作来说明传质的基本原理,并导出传质的速率关系,作为分析吸收操作与计算吸收设备的依据。•气体吸收是溶质先从气相主体扩散到气液界面,再从气液界面扩散到液相主体的传质过程。2020/2/3projectsofDr.Hao182––2––1气液相际传质理论相对于气相浓度y而言,液相浓度欠饱和(xx*),故液相有吸收溶质A的能力。相对于液相浓度x而言,气相浓度为过饱和(yy*),溶质A由气相向液相转移。一、传质过程的方向气、液相浓度(y,x)在平衡线上方(P点):yxoy*=f(x)Pyxy*结论:若系统气、液相浓度(y,x)在平衡线上方,则体系将发生从气相到液相的传质,即吸收过程。x*释放溶质吸收溶质2020/2/3projectsofDr.Hao19相对于气相浓度而言实际液相浓度过饱和(xx*),故液相有释放溶质A的能力。相对于液相浓度x而言气相浓度为欠饱和(yy*),溶质A由液相向气相转移。传质过程的方向气、液相浓度(y,x)在平衡线下方(Q点):yxoy*=f(x)Qyxy*结论:若系统气、液相浓度(y,x)在平衡线下方,则体系将发生从液相到气相的传质,即解吸过程。x*释放溶质吸收溶质2020/2/3projectsofDr.Hao20相对于气相浓度而言液相浓度为平衡浓度(x=x*),故液相不释放或吸收溶质A。相对于液相浓度x而言气相浓度为平衡浓度(y=y*),溶质A不发生转移。传质过程的方向气、液相浓度(y,x)处于平衡线上(R点):yxoy*=f(x)Ryxy*结论:若系统气、液相浓度(y,x)处于平衡线上,则体系从宏观上讲将不会发生相际间的传质,即系统处于平衡状态。x*2020/2/3projectsofDr.Hao21二、传质过程的