28双曲线的简单几何性质

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

双曲线的简单几何性质(1)1.双曲线的标准方程:形式一:(焦点在x轴上,(-c,0)、(c,0)))0,0(12222babyax1F2F形式二:(焦点在y轴上,(0,-c)、(0,c))其中)0,0(12222babxay1F2F222bac一、复习回顾:oYX标准方程范围对称性顶点焦点对称轴离心率关于X,Y轴,原点对称(±a,0),(0,±b)(±c,0)A1A2;B1B2ace|x|a,|y|≤b12222byaxF1F2A1A2B2B12.椭圆的图像与性质:2、对称性一、研究双曲线的简单几何性质)0b,0a(1byax22221、范围ax,axax,1ax2222即关于x轴、y轴和原点都是对称的.x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)二、讲授新课:3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-b1B2Bb1A2A-aa)0,a(A)0,a(A21、顶点是如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长2A1A2B1B(2)实轴与虚轴等长的双曲线叫等轴双曲线(3))0(22mmyx4、离心率双曲线的叫做的比双曲线的焦距与实轴长,ace离心率。ca0e1e是表示双曲线开口大小的一个量,e越大开口越大!(1)定义:(2)e的范围:(3)e的含义:222222221ababaace也增大增大且时,当ab,e),,0(ab),1(e的夹角增大增大时,渐近线与实轴e191622yx双曲线范围:)1(Ryxx,44或顶点坐标:)2()0,4(),0,4(21AA焦点坐标:)3()0,5(),0,5(21FF离心率:)4(45ace1F2F1AxyO2A的图象是什么?思考:xy1轴轴和图象无限靠近yx22221,(0,0)xyabab双曲线xyOxabyxaby5、渐近线002222byaxbyaxbyax)0,0(,12222babyax双曲线的渐近线为:13422yxxy23的渐近线为:12222yxxy等轴双曲线2exyOxabyxaby叫做双曲线的渐近线。直线xaby2122222222ababaace焦点在x轴上的双曲线的几何性质双曲线标准方程:YX12222byax1、范围:x≥a或x≤-a2、对称性:关于x轴,y轴,原点对称。3、顶点:A1(-a,0),A2(a,0)4、轴:实轴A1A2虚轴B1B2A1A2B1B25、渐近线方程:6、离心率:e=acbyxa关于x轴、y轴、原点对称图形方程范围对称性顶点离心率)0(1babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay0012222Rxayay,或关于x轴、y轴、原点对称)1(eace渐近线xbay..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)Ryaxax,或)1(eacexaby如何记忆双曲线的渐近线方程?22222222(0)0.xyxyabab双曲线渐近线方程02222byax0))((byaxbyax或0byax.0byaxxaby=能不能直接由双曲线方程推出渐近线方程?结论:100xy(a,b)ab2222双曲线方程中,把1改为0,得例1、求下列双曲线的渐近线方程(1)4x2-9y2=36,(2)25x2-4y2=100.2x±3y=05x±2y=0oxy例3.已知双曲线的渐近线是,并且双曲线过点02yx)3,4(M求双曲线方程.Q4M222222221ab1abxyyx设双曲线方程为?还是?oxy变形:已知双曲线渐近线是,并且双曲线过点02yx)5,4(N求双曲线方程.NQ22220,x;0,yxyab令双曲线为,若求得则双曲线的交点在轴若则焦点在轴上。222222221ab1abxyyx设双曲线方程为?还是?

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功