《二次根式》复习课教案教学目标.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式..二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化..在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例取什么值时,下列各式在实数范围内有意义:分析:()题是两个二次根式的和,的取值必须使两个二次根式都有意义;()题是两个二次根式的和,的取值必须使两个二次根式都有意义;()题的分子是二次根式,分母是含的单项式,因此的取值必须使二次根式有意义,同时使分母的值不等于零.≥且≠.解因为≥,≥,且≠,所以且≠,所以例分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件≥和>.解因为>,≥,所以<,=.()()[()][()]()()≥.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.解注意:所以在化简过程中,例分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.=(),()()=(),三、课堂练习.选择题:.≤.≥.≠.<.........填空题:.计算:四、小结.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握..在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围..运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件..通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业.是什么值时,下列各式在实数范围内有意义?.把下列各式化成最简二次根式:人生最大的幸福,莫过于连一分钟都无法休息零碎的时间实在可以成就大事业珍惜时间可以使生命变的更有价值时间象奔腾澎湃的急湍,它一去无返,毫不流连一个人越知道时间的价值,就越感到失时的痛苦得到时间,就是得到一切用经济学的眼光来看,时间就是一种财富时间一点一滴凋谢,犹如蜡烛漫漫燃尽我总是感觉到时间的巨轮在我背后奔驰,日益迫近夜晚给老人带来平静,给年轻人带来希望不浪费时间,每时每刻都做些有用的事,戒掉一切不必要的行为时间乃是万物中最宝贵的东西,但如果浪费了,那就是最大的浪费我的产业多么美,多么广,多么宽,时间是我的财产,我的田地是时间时间就是性命,无端的空耗别人的时间,知识是取之不尽,用之不竭的。只有最大限度地挖掘它,才能体会到学习的乐趣。新想法常常瞬息即逝,必须集中精力,牢记在心,及时捕获。每天早晨睁开眼睛,深吸一口气,给自己一个微笑,然后说:“在这美妙的一天,我又要获得多少知识啊!”不要为这个世界而惊叹,要让这个世界为你而惊叹!如果说学习有捷径可走,那也一定是勤奋。学习犹如农民耕作,汗水滋润了种子,汗水浇灌了幼苗,没有人瞬间奉送给你一个丰收。藏书再多,倘若不读,只是一种癖好;读书再多,倘若不用,只能成为空谈。学习好似一片沃土,只要辛勤耕耘,定会有累累的硕果;如若懒于劳作,当别人跳起丰收之舞时,你已是后悔莫及了。不渴望能够一跃千里,只希望每天能够前进一步,学习的成功与失败原因是多方面的,要首先从自己身上找原因,才能受到鼓舞,找出努力的方向