用频率估计概率必然事件不可能事件可能性0½(50%)1(100%)不可能发生可能发生必然发生随机事件(不确定事件)回顾概率定义:事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0P(不确定事件)1.如果A为随机事件(不确定事件),那么0P(A)1.用列举法求概率的条件是什么?nmAP(1)实验的所有结果是有限个(n)(2)各种结果的可能性相等.当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?问题1:某林业部门要考查某种幼树在一定条件下的移植成活率,应采取什么具体做法?问题2:某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(去掉坏的),每千克大约定价为多少元?上面两个问题,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等,事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.试验者投掷次数(n)“正面向上”的次数(m)“正面向上”的频率()隶莫弗布丰费勒皮尔逊皮尔逊204840401000012000240001061204849796019120120.5180.50690.49790.50160.5005mn投掷一枚硬币,“正面向上”的频率2.历史数据材料1:则估计抛掷一枚硬币正面朝上的概率为__o.5材料2:则估计油菜籽发芽的概率为___0.9瑞士数学家雅各布.伯努利(1654-1705)最早阐明了可以由频率估计概率即:在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率结论随机事件A,用频率估计概率P(A)能小于0大于1吗?一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么事件A发生的概率P(A)=pnm需要注意的是:概率是针对大量重复的试验而言的,大量试验反映的规律并非在每一次试验中出现.更一般地,即使试验的所有可能的结果不是有限个,或各种可能的结果发生的可能性不相等,也可以通过试验的方法去估计一个随机事件发生的概率.只要试验次数是足够大的,频率就可以作为概率的估计值.P142练习问题1:国家在明年将继续实施山川秀美工程,各地将大力开展植树造林活动.为此林业部要考查幼树在一定条件下的移植成活率,应采用什么具体做法?分析:幼树移植成活率,是实际问题中的一种概率,它不属于等可能性的问题,所以成活率要用频率去估计.填P143页的表格并完成表后的填空.A类树苗:B类树苗:移植总数(m)成活数(m)成活的频率(m/n)10850472702354003697506621500133535003203700063351400012628移植总数(m)成活数(m)成活的频率(m/n)109504927023040036075064115001275350029967000598514000119140.80.940.8700.9230.8830.8900.9150.9050.9020.90.980.850.90.8550.8500.8560.8550.851例1:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:观察图表,回答问题串1、从表中可以发现,A类幼树移植成活的频率在_____左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计A类幼树移植成活的概率为____,估计B类幼树移植成活的概率为___.2、张小明选择A类树苗,还是B类树苗呢?_____,若他的荒山需要10000株树苗,则他实际需要进树苗________株?3、如果每株树苗9元,则小明买树苗共需________元.0.90.90.85A类11112100008问题2、某水果公司以2元/千克的成本新进了10000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率“统计,并把获得的数据记录在下表中了问题1:完好柑橘的实际成本为______元/千克问题2:在出售柑橘(已去掉损坏的柑橘)时,希望获利5000元,每千克大约定价为多少元比较合适?柑橘总质量(n)千克损坏柑橘质量(m)千克柑橘损坏的频率(m/n)505.5010010.5015015.1520019.4225024.3530030.3235035.3240039.2445044.5750051.540.1100.1050.1010.0970.0970.1010.1010.0980.0990.1032.22约2.8元概率伴随着你我他1.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有100000×0.125=12500人看中央电视台的早间新闻.从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证一下你事先估计是否正确?你能估计图钉尖朝上的概率吗?大家都来做一做结束寄语:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律.