第六节洛伦兹力与现代技术1.洛伦兹力的大小:2.洛伦兹力的方向:vfBf洛洛的方向夹角)与为(洛vBθBqvsinθBqvf左手定则:四指指向与形成的电流方向一致,即与正电荷运动方向相同,与负电荷运动方向相反。不平行)与vB(f洛对电荷不做功。(f洛⊥v)f洛只改变v的方向,不改变v的大小。第六节洛伦兹力与现代技术电荷在磁场中的两种运动形式:(不计其它作用力)(2)当υ⊥B时,所受洛仑兹力垂直速度,洛仑兹力提供向心力,做匀速圆周运动。(1)当υ∥B时,所受洛仑兹力为零,做匀速直线运动;实验第六节洛伦兹力与现代技术洛伦兹力演示仪两个平行的通电环形线圈可产生沿轴线方向的匀强磁场第六节洛伦兹力与现代技术质量为m,电量为q的带电粒子,以大小为v的速度垂直进入磁感应强度为B的匀强磁场中,则其做匀速圆周运动的半径r和周期T分别为多少?(不计其它作用力)第六节洛伦兹力与现代技术222vmmrvTrqBrmvqB2TmqB因为:f洛=F向第六节洛伦兹力与现代技术例、两个电子以大小不同的初速度沿垂直磁场的方向射入一匀强磁场中.设r1、r2为这两个电子的运动轨道半径,T1、T2是它们的运动周期,则()A、r1=r2,T1≠T2B、r1≠r2,T1≠T2C、r1=r2,T1=T2D、r1≠r2,T1=T2D第六节洛伦兹力与现代技术例、一带电粒子在磁感应强度为B的匀强磁场中做匀速圆周运动,如果它又顺利进入另一磁感应强度是2B的匀强磁场(仍作匀速圆周运动),则[]A.粒子的速率加倍,周期减半B.粒子的速率不变,轨道半径减半C.粒子的速率减半,轨道半径变为原来的1/4D.粒子的速率不变,周期减半BD第六节洛伦兹力与现代技术【例】图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B。一带正电q、质量为m的粒子从平板上狭缝O处以垂直于平板的初速v射入磁场区域,不计重力,求:(1)粒子离开磁场的位置;(2)粒子在磁场中的运动时间。第六节洛伦兹力与现代技术【例】如图所示,在x轴上方有匀强磁场B,一个质量为m,带电量为-q的粒子,以速度v从O点射入磁场,已知速度与x轴负向的夹角θ,粒子重力不计,求:(1)粒子在磁场中的运动时间。(2)粒子离开磁场的位置第六节洛伦兹力与现代技术【例】如图所示一电子以速度v垂直射入磁感应强度为B,宽度为d的匀强磁场中,穿过磁场时速度方向与电子原来入射方向夹角为30°,则电子的质量是多少?D第六节洛伦兹力与现代技术圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹上任意两点(一般是射入和射出磁场的两点)的f的方向,其延长线的交点即为圆心。第六节洛伦兹力与现代技术半径r的确定和计算:圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径)。半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于对应圆弧的弦切角的两倍等知识。第六节洛伦兹力与现代技术在磁场中运动时间t的确定:利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角的大小,由公式t=×T可求出运动时间。有时也用弧长与线速度的比。第六节洛伦兹力与现代技术圆周运动中有关规律:①速度的偏向角φ等于弧AB所对的圆心角θ(φ=θ)②偏向角φ与弦切角α的关系为:φ<180°时,φ=2α;φ>180°时,φ=360°-2α;③对称规律:如果从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;如果在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。第六节洛伦兹力与现代技术速度选择器qEBqvEvB在电、磁场中,若不计重力,则:1.速度选择器只选择速度,与电荷的正负、质量无关;2.注意电场和磁场的方向搭配。速度选择器第六节洛伦兹力与现代技术二.质谱仪质谱仪第六节洛伦兹力与现代技术三.回旋加速器1.加速电场的周期与带电粒子在D型盒中圆周运动周期相等。2.设D型盒最大半径R,则回旋加速器所能达到的最大动能为:2222maxKqBREm回旋加速器第六节洛伦兹力与现代技术四.磁流体发电机等离子体——即高温下电离的气体,含有大量的带正电荷和负电荷的微粒,总体是电中性的。磁流体发电第六节洛伦兹力与现代技术五.磁偏转与显像管显像管第六节洛伦兹力与现代技术第六节洛伦兹力与现代技术一.带电粒子在磁场中的运动关于洛伦兹力的讨论:1.洛伦兹力的方向垂直于v和B组成的平面。2.洛伦兹力对电荷不做功。(f洛⊥v)3.洛伦兹力只改变速度的方向,不改变速度的大小。【结论】只在洛伦兹力的作用下,且v⊥B时,电荷将作匀速圆周运动。222vmmrvTrqBrmvqB2TmqB实验所以:即:因为:f洛=F向第六节洛伦兹力与现代技术【例】图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B。一带电粒子从平板上狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点。已知B、v以及P到O的距离l,不计重力,求此粒子的电荷q与质量m之比。