六年级奥数讲义列方程解应用题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十讲列方程解应用题小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100.”那么聪明的你知道一共有多少只猩猩吗?呵呵!认真学习今天的好方法,你就可以准确、快速的解答出上面的问题了!内容概述在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。它们都是以四则运算和常见的数量关系为基础,通过分析题里的数量关系,根据四则运算的意义列式解答的。但是,两种解答方法的解题思路却不同。由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理清数量关系,正确解决问题。特别是在解比较复杂的或有特殊解法的应用题时,用方程往往比较容易。列方程解应用题的一般步骤是:①审清题意,弄清楚题目意思以及数量之间的关系,;②合理设未知数x,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数;③依题意确定等量关系,根据等量关系列出方程;④解方程;⑤将结果代入原题检验。概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。寻找等量关系的常用方法是:根据题中“不变量”找等量关系。一些基本概念:(1)像4x+2=9这样的的等式,只含有一个未知数x,而且未知数x的指数为1的方程叫做一元一次方程;(2)像2x+y=8这样的的等式,含有两个未知数x、y,而且未知数的指数都为1的方程叫做二元一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;(3)如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个方程才能求出唯一解.如果有更多的未知数,可借助今天学习的解题思路来类推出解法.类型Ⅰ:列简易方程解应用题【例1】(清华附中培训试题)(难度系数:★★)解下列方程:(1)357xx(2)452xx(3)12(3)7xx(4)132(23)5(2)xx(5)5118()2352xx(6)1123xx(7)527xyxy(8)2311329xyxy分析:(1)375,22,21.1xxxxx移项得:注意把“同类”放在等号的同侧,移项过程中注意变号;化简得:等式两边同时除以可得:把代入原式满足等式.以下各题不再写检验步骤,请教师强调学生答案要检验.(2)2541.xxx,(3)16277730.xxxx,,(4)134652194719741234.xxxxxxxx,,-=,,(5)511154104101104()410.35236333333xxxxxxxxxx,,,,,(6)312633263.xxxxx()-,,请教师强调学生在解答时要注意:移项变号、同类放在等式一边、(4)中去括号时每一项都要发生相应变化、(6)中每一项都同时扩大6倍、(5)中可以先简化运算的一定要先化简。(7)法1:加减消元法(8)512722121323xyxyxyxy  ()  ()()式-()式可得:,代入()式可得:,所以23111329212153,1.13xyxyyyxxy  ()  ()()3-()2可得:5,将其代入(1)式可得:所以可得:法2:代入法.建议教师将(7)、(8)贯穿起来,让学生深刻体会:(1)代入法,以及代入法在什么情况下好用;(2)加减消元法,其本质是找(制造)到一个未知数的系数相等,再利用等式加减得到结果.【例2】(清华附中培训试题)(难度系数:★★)汽车以每小时72公里的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)分析:72千米/小时=72000米/3600秒=2米/秒,设听到回音时汽车离山谷x米,根据题意可得:340×4=2x+2×4,解得x=676(米).【例3】(小数报数学竞赛初赛)(难度系数:★★★)用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?分析:法1:设井深是x厘米,则有:2x+60×2=3x-40×3,井深x=240(厘米),绳长600厘米;法2:设绳长是y厘米,则有:11y-60=y+40,y=60024023  解得绳长(厘米),井深厘米.【例4】(奥数网习题库)(难度系数:★★)箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球.如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?分析:设取球的次数为x次.那么原有的白球数为(3+7x),红球数为(53+15x).再根据题中的第一个条件:53+15x=3×(3+7x)+2,解得x=7,所以原有红球158个,原有白球52个,红球比白球多106个.此题用逆向思维较难求解,但是用方程则思路非常清晰简单.【例5】(奥数网习题库)(难度系数:★★★)小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100.”那么聪明的你知道一共有多少只猩猩吗?分析:设动物园有x只猩猩,依题意有:(x+x)+(x-x)+x×x+x÷x=100,即2x+0+x×x+1=100,亦即x(x+2)=99,又x整数,只有唯一解x=9.【例6】(华杯赛复赛)(难度系数:★★★)从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米。车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?分析:从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路。设从甲地到乙地的上坡路为x千米,下坡路为y千米,依题意得解得x=140,y=70,所以甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【例7】(华杯赛决赛)(难度系数:★★★★)幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老师给小孩分枣,甲班每个小孩比乙班每个小孩少分了3个枣,乙班每个小孩比丙班每个小孩少分了5个枣,结果甲班比乙班总共多分了3个枣,乙班比丙班总共多分了5个枣,三个班总共分了多少个枣?分析:法1:设甲班有x人,则乙班有(x-4)人,丙班有(x-8)人;甲班每人分得y个枣,则乙班每人分得(y+3)个,丁班每人分得(y+8)个.那么有甲班共分得xy个枣,乙班共分得(x-4)(y+3)枣,丙班共分得(x-8)(y+8)个枣.8)8)(8(3)3)(4(yxxyyxxy,整理有7943yxyx,解得1219yx.因此,甲班小孩19人,每个小孩分枣12个;乙班小孩15人,每个小孩分枣15个;丙班小孩11人,每个小孩分枣20个.19×12+15×15+11×20=673(个),所以,三班共分673个枣.法2:先看甲、丙两班,有甲班x人比丙班x人少分8x颗枣,而甲班共分得枣比丙班多8个,所以甲班多出的8人共分得8x+8颗枣,即每人分得x+1颗枣.那有94418xxxxxx丙班乙班甲班每人枣数人数再看乙、丙班,乙班x人比丙班x人少分5x颗枣,而乙班共分得的枣比丙班多5个枣,所以乙班多出的4人共分得5x+x颗枣,即每人分得(5x+5)÷4颗枣.有(5x+5)÷4=x+4,解得x=11.因此,甲班小孩19人,每个小孩分枣12个;乙班小孩15人,每个小孩分枣15个;丙班小孩11人,每个小孩分枣20个.19×12+15×15+11×20=673(个),所以三班共分673个枣.类型Ⅲ:引入参数列方程解应用题对于数量关系比较复杂或已知条件较少的应用题,列方程时,除了应设的未知数外,还需要增设一些“设而不求”的参数,便于把用自然语言描述的数量关系翻译成代数语言,以便沟通数量关系,为列方程创造条件。【例8】(101中学分班考试试题)(难度系数:★★)五年级二班数学考试的平均分数是85分,其中32的人得80分以上(含80分),他们的平均分数是90分。求低于80分的人的平均分。分析:设该班级有a名同学,低于80分的人的平均分为x,则得方程:21859033aaax,解得x=75.【例9】(华杯赛决赛)(难度系数:★★★★)有两个班的小学生要到少年宫参加活动,但只有一辆车接送,甲班的学生坐车从学校出发的同时,乙班的学生开始步行,车到中途某处,让甲班的学生下车步行,车立刻返回接乙班的学生上车并直接开往少年宫,两班学生正好同时到达。已知学生步行速度为每小时4千米,载学生时车速为每小时40千米,空车时速度为每小时50千米。求甲班学生应步行全程的几分之几?(学生上下车时间不计)888455xyzxyzxyz人数每人枣数共分枣数甲班乙班丙班分析:因为每班步行和坐车的行程总和一样长,又同时出发,同时到达,所以甲、乙两班的步行距离和坐车距离都相等。也就是说图上乙步行的距离b千米和甲步行的距离a千米相等。而根据题意我们又可以找到下列等量关系:乙班步行b千米(也就是a千米)所用的时间等于汽车送完甲队又原路返回遇到乙队共用的时间。然后根据等量关系列方程解答即可。设全程为x千米,甲、乙两班分别步行a、b千米,根据题意得:24050417xaxaaax解得:所以甲班步行了全程的17.由上例可以看出,列方程解应用题并不一定只设一个未知数,根据解题的需要,我们有时可以多设几个字母来代替数,帮助我们理清题目中复杂的数量关系,以便我们能够很快的找到解决问题的途径。【例10】(小学奥林匹克决赛)(难度系数:★★★)如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯形的上底是下底长的32。那么余下的阴影部分的面积是多少?分析:设上底为a2,那么下底为a3,则上下两个三角形的高分别为aah1022101,aah832122,梯形的高是aaahh1881021,其面积为45218)32(aaa,阴影部分面积为23121045。类型Ⅱ:列不定方程解应用题有些应用题,用代数方程求解,有时会出现所设未知数的个数多于所列方程的个数,这种情况下的方程称为不定方程。这时方程的解有多个,即解不是唯一确定的,对于这部分内容我们是要和数论中的数的整除性问题结合起来。但注意到题目对解的要求,有时只需要其中一些或个别解。【例11】(奥数网习题库)(难度系数:★)有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶。问:大、小油桶各几个?分析:设有大油桶x个,小油桶y个。由题意8x+5y=44,知8x≤44,所以x=0、1、2、3、4、5。相应的将x的所有可能值代入方程,可得x=3时,y=4.此题在解答时,也可联系数论的知识,注意到能被5整除的数的特点,便可轻松求解.【例12】(迎春杯预赛试题)(难度系数:★★)小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.小华比小强多买来铅笔__支.分析:设买5分一支的铅笔m支,7分一支的铅笔n支。则:5×m+7×n=64,64—7×n是5的倍数.用n=0,1,2,3,4,5,6,7,8代入检验,只有n=2,7满足这一要求,得出相应的m=10,3.即小华买铅笔lO+2=12支,小强买铅笔7+3=10支,小华比小强多买2支.【例13】(

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功