上传 正弦、余弦定理及解三角形(师用)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1正弦、余弦定理及解三角形(师用)知识点:1、正弦定理2、余弦定理教学目标;:1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.正弦定理和余弦定理高考考点:1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状.3.考查利用正、余弦定理解任意三角形的方法.复习1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:asinA=bsinB=csinC=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sinA∶sinB∶sinC;(2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C;2(3)sinA=a2R,sinB=b2R,sinC=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.余弦定理可以变形为:cosA=b2+c2-a22bc,cosB=a2+c2-b22ac,cosC=a2+b2-c22ab.3.S△ABC=12absinC=12bcsinA=12acsinB=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<bsinAa=bsinAbsinA<a<ba≥ba>ba≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sinA>sinB.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应3注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.练习题1.在△ABC中,A=60°,B=75°,a=10,则c等于().A.52B.102C.1063D.56解析C=180-A-B=45,asinA=csinC答案C2.在△ABC中,若sinAa=cosBb,则B的值为().A.30°B.45°C.60°D.90°解析由正弦定理知:sinAsinA=cosBsinB,∴sinB=cosB,∴B=45°.答案B3.在△ABC中,a=3,b=1,c=2,则A等于().A.30°B.45°C.60°D.75°解析由余弦定理得:cosA=b2+c2-a22bc=1+4-32×1×2=12,∵0<A<π,∴A=60°.答案C4.在△ABC中,a=32,b=23,cosC=13,则△ABC的面积为().A.33B.23C.43D.34解析∵cosC=13,0<C<π,∴sinC=223,∴S△ABC=12absinC=12×32×23×223=43.答案C5.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.解析∵a2+b2-c2=-3ab,∴cosC=a2+b2-c22ab=-32,故C=150°为三角形的最大内角.答案150°考点一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.[审题视点]已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解由正弦定理得asinA=bsinB,3sinA=2sin45°,∴sinA=32.∵a>b,∴A=60°或A=120°.当A=60°时,C=180°-45°-60°=75°,c=bsinCsinB=6+22;5当A=120°时,C=180°-45°-120°=15°,c=bsinCsinB=6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】1、在△ABC中,若b=5,∠B=π4,tanA=2,则sinA=________;a=________.解析因为△ABC中,tanA=2,所以A是锐角,且sinAcosA=2,sin2A+cos2A=1,联立解得sinA=255,再由正弦定理得asinA=bsinB,代入数据解得a=210.答案2552102、在ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,12cos()0BC,求边BC上的高.【命题意图】:本题考察两角和的正弦公式,同角三角函数的基本关系,利用内角和定理、正弦定理、余弦定理以及三角形边与角之间的大小对应关系解三角形的能力,考察综合运算求解能力。【解析】:∵A+B+C=180°,所以B+C=A,又12cos()0BC,∴12cos(180)0A,即12cos0A,1cos2A,又0°A180°,所以A=60°.在△ABC中,由正弦定理sinsinabAB得sin2sin602sin23bABa,6又∵ba,所以B<A,B=45°,C=75°,∴BC边上的高AD=AC·sinC=2sin752sin(4530)2(sin45cos30cos45sin30)2321312()22222.3、在ABC中,CBA,,的对边分别是cba,,,已知CbBcAacoscoscos3.(1)求Acos的值;(2)若332coscos,1CBa,求边c的值.考点二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cosBcosC=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.[审题视点]由cosBcosC=-b2a+c,利用余弦定理转化为边的关系求解.解(1)由余弦定理知:cosB=a2+c2-b22ac,7cosC=a2+b2-c22ab.将上式代入cosBcosC=-b2a+c得:a2+c2-b22ac·2aba2+b2-c2=-b2a+c,整理得:a2+c2-b2=-ac.∴cosB=a2+c2-b22ac=-ac2ac=-12.∵B为三角形的内角,∴B=23π.(2)将b=13,a+c=4,B=23π代入b2=a2+c2-2accosB,得b2=(a+c)2-2ac-2accosB,∴13=16-2ac1-12,∴ac=3.∴S△ABC=12acsinB=334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】1、已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cosA=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cosA=0,得1+cosA+cosA=0,即cosA=-12,8∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bccosA,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC=12bcsinA=3.2、设△ABC的内角A、B、C所对的边分别为,,abc,已知.11,2,cos4abC(Ⅰ)求△ABC的周长;(Ⅱ)求cos(A—C.)本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力.解:(1)∵22212cos1444,4cababC∴2c.∴△ABC的周长为a+b+c=1+2+2=5.(2)∵1cos,4C∴22115sin1cos1().44CC∵15sin154sin,.28aCAc∵,acAC,故A为锐角.∴22157cos1sin1().88AA∴71151511cos()coscossinsin.848416ACACAC考点三利用正、余弦定理判断三角形形状两种途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这9个结论.【例3】►在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sinC,试判断△ABC的形状.[审题视点]首先边化角或角化边,再整理化简即可判断.解由已知(a2+b2)sin(A-B)=(a2-b2)sinC,得b2[sin(A-B)+sinC]=a2[sinC-sin(A-B)],即b2sinAcosB=a2cosAsinB,即sin2BsinAcosB=sin2AcosBsinB,所以sin2B=sin2A,由于A,B是三角形的内角.故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】1、在△ABC中,若acosA=bcosB=ccosC;则△ABC是(B).A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形解析由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC(R为△ABC外接圆半径).∴sinAcosA=sinBcosB=sinCcosC.即tanA=tanB=tanC,∴A=B=C.答案B2、若ABC的三个内角满足sin:sin:sin5:11:13ABC,则ABC(C)A.一定是锐角三角形.B.一定是直角三角形.C.一定是钝角三角形.D.可能是锐角三角形,也可能是钝角三角形3、△ABC中,2=sinC,则此三角形的形状是(A)10A.等腰△B.等腰或者直角△C.等腰直角△D.直角△解析sinC=sin(180-A-B)=sin(A+B)=sinAcosB+cosAsinBsinAcosB-cosAsinB=0sin(A-B)=0考点四----正、余弦定理的综合应用【例3】►在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=π3.(1)若△ABC的面积等于3,求a,b;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.[审题视点]第(1)问根据三角形的面积公式和余弦定理列出关于a,b的方程,通过方程组求解;第(2)问根据sinC+sin(B-A)=2sin2A进行三角恒等变换,将角的关系转换为边的关系,求出边a,b的值即可解决问题.解(1)由余弦定理及已知条件,得a2+b2-ab=4.又因为△ABC的面积等于3,所以12absinC=3,得ab=4,联立方程组a2+b2-ab=4,ab=4,解得a=2,b=2.(2)由题意,得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA.当cosA=0,即A=π2时,B=π6,a=433,b=233;当cosA≠0时,得sinB=2sinA,由正弦定理,得b=2a.联立方程组a2+b2-ab=4,b=2a,11解得a=233,b=433.所以△ABC的面积S=12absinC=233.正弦定理、余弦定理、三角形面积公式对任意

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功