问题1如图,舞台背景的形状是两个直角三角形,为了美观,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.你能帮工作人员想个办法吗?创设情境引出“HL”判定方法(1)如果用直尺和量角器两种工具,你能解决这个问题吗?问题1如图,舞台背景的形状是两个直角三角形,为了美观,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.你能帮工作人员想个办法吗?创设情境引出“HL”判定方法(2)如果只用直尺,你能解决这个问题吗?八年级上册12.2三角形全等的判定(第4课时)问题2任意画一个Rt△ABC,使∠C=90°,再画一个Rt△A'B'C',使∠C'=90°,B'C'=BC,A'B'=AB,然后把画好的Rt△A'B'C'剪下来放到Rt△ABC上,你发现了什么?实验操作探索“HL”判定方法ABCABC(1)画∠MC'N=90°;(2)在射线C'M上取B'C'=BC;(3)以B'为圆心,AB为半径画弧,交射线C'N于点A';(4)连接A'B'.实验操作探索“HL”判定方法现象:两个直角三角形能重合.说明:这两个直角三角形全等.画法:A'NMC'B'有斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边、直角边”定理或“HL”直角三角形全等的判定定理高、直角边斜边斜边、直角边公理(HL)ABCA′B′C′有斜边和一条直角边对应相等的两个直角三角形全等.在Rt△ABC和Rt△中AB=BC=∴Rt△ABC≌CBABACB(HL)C′B′A′Rt△∵∠C=∠C′=90°证明:∵AC⊥BC,BD⊥AD,∴∠C和∠D都是直角.在Rt△ABC和Rt△BAD中,AB=BA,AC=BD,∴Rt△ABC≌Rt△BAD(HL).∴BC=AD(全等三角形对应边相等).“HL”判定方法的运用例1如图,AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.ABCD变式1如图,AC⊥BC,BD⊥AD,要证△ABC≌△BAD,需要添加一个什么条件?请说明理由.(1)();(2)();(3)();(4)().AD=BCAC=BD∠DAB=∠CBA∠DBA=∠CABHLHLAASAAS“HL”判定方法的运用ABCD“HL”判定方法的运用例2如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?为什么?∠ABC+∠DFE=90°“HL”判定方法的运用例2如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?为什么?证明:∵AC⊥AB,DE⊥DF,∴∠CAB和∠FDE都是直角.在Rt△ABC和Rt△DEF中,BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL).“HL”判定方法的运用例2如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?为什么?证明:∴∠ABC=∠DEF(全等三角形对应角相等).∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.1.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。课堂练习课堂练习练习2如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF.求证:AE=DF.ABCDEF直角三角形全等的判定一般三角形全等的判定“SAS”“ASA”“AAS”“SSS”“SAS”“ASA”“AAS”“HL”灵活运用各种方法证明直角三角形全等应用“SSS”小结拓展教科书习题12.2第6、7、8题.布置作业