新人教版27.2.3相似三角形应用举例

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

27.2相似三角形应用举例商城思源实验学校1、判断两三角形相似有哪些方法?2、相似三角形有什么性质?复习回顾定义,平行法,(SSS),(SAS),(AA),(HL)(1)对应边的比相等,对应角相等(2)相似三角形的周长比等于相似比(3)相似三角形的面积比等于相似比的平方(4)相似三角形的对应边上的高、中线、角平分线的长度比等于相似比WXQ胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。埃及著名的考古专家穆罕穆德应用举例1埃及著名的考古专家穆罕穆德决定重新测量胡夫金字塔的高度.在一个烈日高照的上午.他和儿子小穆罕穆德来到了金字塔脚下,他想考一考年仅15岁的小穆罕穆德.2米木杆皮尺给你一条2米高的木杆,一把皮尺.你能利用所学知识来测出塔高吗?例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BODEA(F)BO2m3m201mDEA(F)BO2m3m201m解:太阳光是平行线,因此∠BAO=∠EDF又∠AOB=∠DFE=90°∴△ABO∽△DEFBOEF=BO==134OAFDOA·EFFD=201×23AFEBO┐┐还可以有其他方法测量吗?OBEF=OAAF△ABO∽△AEFOB=OA·EFAF平面镜一题多解1、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?解:设高楼的高度为X米,则1.8360601.8336xxx答:楼高36米.应用感悟1WXQ如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.ADCEB应用举例2解:因为∠ADB=∠EDC,∠ABC=∠ECD=90°,所以△ABD∽△ECD,答:两岸间的大致距离为100米.DCBDECAB那么)100(6050120DCECBDAB米解得应用举例2我们还可以在河对岸选定一目标点A,再在河的一边选点D和E,使DE⊥AD,然后,再选点B,作BC∥DE,与视线EA相交于点C。此时,测得DE,BC,BD,就可以求两岸间的大致距离AB了。ADEBC此时如果测得BD=45米,DE=90米,BC=60米,求两岸间的大致距离AB.一题多解1、如图,测得BD=120m,DC=60m,EC=50m,求河宽AB。解:∵∠B=∠C=90°,∠ADB=∠EDC,∴△ABD∽△ECD,∴AB:EC=BD:DC∴AB=50×120÷60=100(m)ABDCE应用感悟22.为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE=30m,那么你能算出池塘的宽AB吗?ABCDE应用感悟21.相似三角形的应用主要有两个方面:(1)测高测量不能到达两点间的距离,常构造相似三角形求解。(不能直接使用皮尺或刻度尺量的)(不能直接测量的两点间的距离)测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决。(2)测距课堂小结2.解相似三角形实际问题的一般步骤:审题构建图形利用相似解决问题1.小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.2.数学兴趣小组测校内一棵树高,如图,把镜子放在离树(AB)8M点E处,然后沿着直线BE后退到D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2M,观察者目高CD=1.6M。树高多少米?DEABC3、如图,已知零件的外径a为25cm,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。O(分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB。而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度。)WXQ4、已知左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?设观察者眼晴的位置(视点)为F,∠CFK和∠AFH分别是观察点C、A的仰角,区域Ⅰ和区域Ⅱ都在观察者看不到的区域(盲区)之内。WXQ解:假设观察者从左向右走到点E时,他的眼睛的位置点F与两棵树的顶端点A、C在一条直线上。∵AB⊥l,CD⊥l,∴AB∥CD,△AFH∽△CFK,∴FH:FK=AH:CK,即,解得FH=8.4.104.66.1126.185FHFH当他与左边较低的树的距离小于8m时,就不能看到右边较高的树的顶端点C。5.教学楼旁边有一棵树,数学兴趣小组的同学们想利用树影测量树高。课外活动时在阳光下他们测得一根长为1米的竹竿的影长是0.9米,但当他们马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上。他们测得落在地面的影长2.7米,落在墙壁上的影长1.2米,请你和他们一起算一下,树高多少米?图116、如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4.5m,如果小明得身高为1.5m,求路灯杆AB的高度。DFBCEGA

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功