110KV变电站设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

110KV变电站设计第六组小组成员吴振元、缪巩益、汪煌桂、汪苇榕、施智扬、林希文、林善驹变电站是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,他从电力系统取得电能,通过其变换、分配、输送与保护等功能,然后将电能安全、可靠、经济的输送到每一个用电设备的转设场所。作为电能传输与控制的枢纽,变电站必须改变传统的设计和控制模式,才能适应现代电力系统、现代化工业生产和社会生活的发展趋势。随着计算机技术、现代通讯和网络技术的发展,为目前变电站的监视、控制、保护和计量装置及系统分隔的状态提供了优化组合和系统集成的技术基础。随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。前言第1章原始资料及其分析第2章负荷分析第3章变压器的选择第4章电气主接线第5章短路电流的计算第6章配电装置及电气设备的配置与选择第7章二次回路部分第8章所用电的设计第9章防雷保护目录第一章原始资料及其分析1.原始资料待建变电站是该地区农网改造的重要部分,预计使用3台变压器,初期一次性投产两台变压器,预留一台变压器的发展空间。1.1电压等级变电站的电压等级分别为110kV,35kV,10kV。110kV:2回35kV:5回(其中一回备用)10kV:12回(其中四回备用)1.2变电站位置示意图:待建变电站ABC图1变电站位置示意图1.3待建变电站负荷数据(表1)电压等级用电单位最大负荷(MW)用电类别回路数供电方式距离(km)35kV铝厂1511架空39钢铁厂101,21架空25A变电站1531架空35B变电站2031架空40备用110kV无线电厂0.5631电缆4仪表厂0.531电缆5手机厂0.6322电缆4电机厂0.4221电缆3电视机厂0.831架空14配电变压器A0.7811架空15配电变压器B0.931架空16其它0.732电缆4备用2注:(1)35kV,10kV负荷功率因数均取cos¢=0.85(2)负荷同时率:35kVkt=0.910kVkt=0.85(3)年最大负荷利用小时数均为Tmax=3500小时/年(4)网损率为A%=8%(5)站用负荷为50kWcos¢=0.87(6)35kV侧预计新增远期负荷20MV10kV侧预计新增远期符合6MV表1待建成变电站各电压等级负荷数据1.4地形地质站址选择在地势平坦地区,四周皆为农田,地质构造洁为稳定区,站址标高在50年一遇的洪水位以上,地震烈度为6度以下。1.5水文气象年最低气温为5度,最高气温为40度,月最高平均气温为31度,年平均气温为22度,降水量为2000毫米,炎热潮湿。1.6环境站区附近无污染源要设计的变电站由原始资料可知有110千伏,35千伏,10千伏三个电压等级。由于该变电站是在农网改造的大环境下设计的,所以一定要考虑到农村的实际情况。农忙期和农限期需电量差距较大,而且考虑到城镇地区的经济发展速度很快,所以变压器的选择考虑大容量的,尽量满足未来几年的发展需要。为了彻底解决农网落后的情况,待建变电站的设计尽可能的超前,采用目前的高新技术和设备。待建变电站选择在地势平坦区为以后的扩建提供了方便。初期投入两台变压器,当一台故障或检修时,另一台主变压器的容量应能满足该站总负荷的60%,并且在规定时间内应满足一、二级负荷的需要。2.原始资料分析第二章负荷分析1.负荷分析的目的负荷计算是供电设计计算的基本依据和方法,计算负荷确定得是否正确无误,直接影响到电器和导线电缆的选择是否经济合理。对供电的可靠性非常重要。如计算负荷确定过大,将使电器和导线选得过大,造成投资和有色金属的消耗浪费,如计算负荷确定过小又将使电器和导线电缆处子过早老化甚至烧毁,造成重大损失,由此可见正确负荷计算的重要性。负荷计算不仅要考虑近期投入的负荷,更要考虑未来几年发展的远期负荷,如果只考虑近期负荷来选择各种电气设备和导线电缆,那随着经济的发展,负荷不断增加,不久我们选择的设备和线路就不能满足要求了。所以负荷计算是一个全面地分析计算过程,只有负荷分析正确无误,我们的变电站设计才有成功的希望。2.待建变电站负荷计算niPi1niPi1cosP85.076.77NUS3353482.912.135kV侧近期负荷:P近35=15+10+15+20=60MW远期负荷:P远35=20MW=60+20=80MWkˊ(1+k)=80*0.9*(1+0.08)=77.76MW=IN35===1.509kAP35=Q35=P·tgφ=P·tg(cos-10.85)=48.20MVar视在功率Sg35==91.482MVA2.210kV侧近期负荷:P近10=0.56+0.5+0.63+0.42+0.8+0.78+0.9+0.7=5.29MW远期负荷:P远10=6MWniPi1niPi1cosP85.0364.10NUS3103192.12=IN10===0.7039kAP10=kˊ(1+k)=11.29*0.85*(1+0.08)=10.364MW=5.29+6=11.29MWQ10=P·tgφ=P·tg(cos-10.85)=6.423MVar视在功率=12.192MVA2.3站用电容量Sg10=Sg所=cosP=87.005.0=0.057MVA2.4待建变电站供电总容量S∑=Sg35+Sg10+Sg所=91.482+12.192+0.057=103.731(MVA)P∑=P35+P10+P所=77.76+10.364+0.05=88.174(MW)第三章变压器的选择1.变电所主变压器的选择有以下几点原则:1)在变电所中,一般装设两台主变压器;终端或分支变电所,如只有一个电源进线,可只装设一台主变压器;对于330kV、550kV变电所,经技术经济为合理时,可装设3~4台主变压器。2)对于330kV及以下的变电所,在设备运输不受条件限制时,均采用三相变压器。500kV变电所,应经技术经济论证后,确定是采用三相变压器,还是单相变压器组,以及是否设立备用的单相变压器。3)装有两台及以上主变压器的变电所,其中一台事帮停运后,其余主变压器的容量应保证该所全部负荷的60%以上,并应保证用户的一级和全部二级负荷的供电。4)具有三种电压等级的变电所,如各侧的功率均达到主变压器额定容量的15%以上,或低压侧虽无负荷,但需装设无功补偿设备时,主变压器一般先用三绕组变压器。5)与两种110kV及以上中性点直接接地系统连接的变压器,一般优先选用自耦变压器,当自耦变压器的第三绕组接有无功补偿设备时,应根据无功功率的潮流情况,校验公共绕组容量,以免在某种运行方式下,限制自耦变压器输出功率。6)500kV变电所可选用自耦强迫油循环风冷式变压器。主变压器的阻抗电压(即短路电压),应根据电网情况、断路器断流能力以及变压器结构选定。7)对于深入负荷中心的变电所,为简化电压等级和避免重复容量,可采用双绕组变压器。2.主变台数的确定由原始资料可知,待建变电站是在农网改造的大环境下建设的。负荷大,出线多,且农用电受季节影响大,所以考虑初期用两台大容量主变。两台主变压器,可保证供电的可靠性,避免一台变压器故障或检修时影响对用户的供电。随着未来经济的发展,可再投入一台变压器。3.主变压器容量的确定主变压器容量一般按变电所建成后5~10年规划负荷选择,并适当考虑到远期10~20年的负荷发展,对于城市郊区变电所,主变压器应与城市规划相结合。此待建变电站坐落在郊区,10kV主要给某开发区供电,35kV主要给下面乡镇及几个大企业供电。考虑到开发区及其乡镇的发展速度非常快,所以我们选择大容量变压器以满足未来的经济发展要求。(1)变电所的一台变压器停止运行时,另一台变压器能保证全部负荷的60%,即/BS(2)单台变压器运行要满足一级和二级负荷的供电需要一,二级负荷为15+10+0.63+0.42+0.78=26.83MVA所以变压器的容量最少为62.241MVA确定变压器容量:=S∑60%=103.731×60%=62.241(MVA)4.2绕组形式绕组的形式主要有双绕组和三绕组。规程上规定在选择绕组形式时,一般应优先考虑三绕组变压器,因为一台三绕组变压器的价格及所用的控制电器和辅助设备,比两台双绕组变压器都较少。对深入引进负荷中心,具有直接从高压变为低压供电条件的变电站,为简化电压等级或减少重复降压容量,可采用双绕组变压器。三绕组变压器通常应用在下列场合:(1)在发电厂内,除发电机电压外,有两种升高电压与系统连接或向用户供电。(2)在具有三种电压等级的降压变电站中,需要由高压向中压和低压供电,或高压和重压向低压供电。(3)在枢纽变电站中,两种不同的电压等级的系统需要相互连接。(4)在星形-星形接线的变压器中,需要一个三角形连接的第三绕组。本待建变电站具有110kV,35kV,10kV三个电压等级,所以拟采用三绕组变压器。4.变压器类型的确定4.1相数的选择变压器的相数形式有单相和三相,主变压器是采用三相还是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。一台三相变压器比三台单相变压器组成的变压器组,其经济性要好得多。规程上规定,当不受运输条件限制时,在330kV及以下的发电厂用变电站,均选用三相变压器。同时,因为单相变压器组相对来讲投资大、占地多、运行损耗也较大,而不作考虑。因此待建变电站采用三相变压器。4.4中性点的接地方式电网的中性点的接地方式,决定了主变压器中性点的接地方式。本变电站所选用的主变为自耦型三绕组变压器。规程上规定:凡是110kV-500kV侧其中性点必须要直接接地或经小阻抗接地;主变压器6-63kV采用中性点不接地。所以主变压器的110kV侧中性点采用直接接地方式,35kV,10kV侧中性点采用不接地方式。型号及容量(kVA)额定容量比高压/中压/低压(%)额定电压高压/中压/低压(kV)空载损耗(kW)-负载损耗(kW)空载电流%阻抗电压(%)高中高低中低SFS7-63000/110100/100/50121/38.5/10.5773000.810.5186.54.3普通型和自耦型的选择自耦变压器是一种多绕组变压器,其特点就是其中两个绕组除有电磁联系外,在电路上也有联系。因此,当自耦变压器用来联系两种电压的网络时,一部分传输功率可以利用电磁联系,另一部分可利用电的联系,电磁传输功率的大小决定变压器的尺寸、重量、铁芯截面积和损耗,所以与同容量、同电压等级的普通变压器比较,自耦变压器的经济效益非常显著。由于自耦变压器的结构简单、经济,在110kV级以上中性点直接接地系统中,应用非常广泛,自耦变压器代替普通变压器已经成为发展趋势。因此,综合考虑选用自耦变压器。综上所述和查有关变压器型号手册所选主变压器的技术数据如下表:表3-1变压器型号第四章电气主接线1.1可靠性安全可靠是主接线的首要任务,保证供电可靠是电气主接线最基本的要求。电气主接线的可靠性不是绝对的。所以在分析电气主接线的可靠性时,要考虑发电厂和变电站的地位和作用、用户的负荷性质和类别、设备的制造水平及运行经验等诸多因素。1.2灵活性电气主接线应能适应各种运行状态,并能灵活的进行运行方式的转换。灵活性包括以下几个方面:(1)操作的灵活性(2)调度的灵活性(3)扩建的灵活性1.3经济性在设计主接线时,主要矛盾往往发生在可靠性和经济性之间。通常设计应满足可靠性和灵活性的前提下做到经济合理。经济性主要通过以下几个方面考虑:节省一次投资。如尽量多采用轻型开关设备等。占地面积少。由于本变电站占用农田所以要尽量减少用地。电能损耗小。电能损耗主要来源变压器,所以一定要做好变压器的选择工作。1.4另外主接线还应简明清晰、运行维护方便、使设备切换所需的操作步骤少,尽量避免用隔离开关操作电源。1.对电气主接线的基本要求对电气主接线的基本要求,概括地说包括可靠性、灵活性和经济性三方面电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规

1 / 62
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功