一、线性方程组的相容性二、有解情况的判定三、小结与思考2020/2/5线性方程组的表达形式:一、线性方程组相容性mbnxmna2xm2a1xm1a2bnx2na2x22a1x21a1bnx1na2x12a1x11a一般式:)1(2020/2/50nxmna2xm2a1xm1a0nx2na2x22a1x21a0nx1na2x12a1x11a导出组0AXBAX导出组矩阵式:)2(2020/2/5;212222111211mnmmnnnaaaaaaaaaA02121nxnxxnxnxx导出组)3(向量式:其中,系数矩阵为2020/2/5mmnmmnnbbbaaaaaaaaaBAA21212222111211常数列增广矩阵;mbbbB212020/2/5解向量:满足方程组的一组值)0()0(2)0(1)0(nxxxX相容性:方程组有解则相容;无解则不相容。)()(ARAR定理4.1方程组相容的充要条件是2020/2/53)(2)(,101000010321ARAR注(1)齐次方程组总是相容的(总有零解);(2)系数矩阵的秩小于等于增广矩阵的秩。即如)()(ARAR,2)()(001000010321ARAR,2020/2/5例判别线性方程组的相容性3522131543221442322312543212xxxxxxxxxxxxxxxxx2020/2/532)()(ARAR解该线性方程组无解。030100000000001335011112314220013111210223111112行BAA2020/2/5二、有解情况的判定定理4.2nnrARAR)()(有唯一解有无穷多解n元线性方程组,BAX2020/2/5例判别方程组解的情况4432221643221224332131423221xxxxxxxxxxxxxxxx2020/2/5解nARAR4)()(该线性方程组有唯一解。73511000031003010221146211221112231132211行BAA2020/2/5例判别方程组解的情况4742313113518833223135543254321543215432154321xxxxxxxxxxxxxxxxxxxxxxxx2020/2/552nARAR)()(解该线性方程组有无穷多解。00041000000000000000174203511143131174201311315881132231135111行BAA2020/2/5定理4.3nn有惟一零解有无穷多解(含零解)n元线性方程组rARARAX)()(,02020/2/5例讨论齐次线性方程组000321321321xxxxxxxxx当为何值时,只有零解或有非零解?2020/2/5解))((200000A法一2020/2/5当和时,线性方程组只有零解;线性方程组有非零解;线性方程组有非零解;当当时,时,,)(nAR3,)(32nAR,)(31nAR12020/2/5法二022200022)()()()())((AA当或1时,线性方程组有非零解;0A当和2时,线性方程组只有零解.2020/2/5例4243212321321xxxkxkxxkxxxK为何值时,线性方程组有惟一解,有无穷多个解,无解?2020/2/5kkkkkkkkkA8284430022011442111111222解2020/2/5线性方程组有唯一解;线性方程组有无穷多个解;线性方程组无解。,32,1)3()()(ARARk,32,4)2(nARARk)()(,34nARAR)()(,1)1(k和2020/2/5nBRAR有无穷多解.bAx非齐次线性方程组bAx齐次线性方程组0AxnAR;0只有零解AxnAR.0有非零解Ax三、小结与思考;有唯一解bAxnBRAR)()(2020/2/5思考题.,???,,12105,3153,363,1324321432143214321求出一般解况下情在方程组有无穷多解的有无穷多解有唯一解方程组无解取何值时当讨论线性方程组tptxxxxxxpxxxxxxxxxx2020/2/5思考题解答tpB121051315133163113211解191260066402242013211~tp2020/2/553000422001121013211~tp;,4)()(,2)1(方程组有唯一解时当BRARp1000021000112101321153000420001121013211~~ttB有时当,2)2(p2020/2/5;,4)(3)(,1方程组无解时当BRARt0000021000302108000100000210001121013211~~B且.,3)()(,1方程组有无穷多解时当BRARt2020/2/5组为与原方程组同解的方程).(203801204321Rkkxxxx,2,32,84321xxxx故原方程组的通解为