蚁群算法(AntColonyOptimization,ACO)蚁群算法的由来:蚂蚁是地球上最常见、数量最多的昆虫种类之一,常常成群结队地出现在人类的日常生活环境中。这些昆虫的群体生物智能特征,引起了一些学者的注意。意大利学者M.Dorigo,V.Maniezzo等人在观察蚂蚁的觅食习性时发现,蚂蚁总能找到巢穴与食物源之间的最短路径。经研究发现,蚂蚁的这种群体协作功能是通过一种遗留在其来往路径上的叫做信息素(Pheromone)的挥发性化学物质来进行通信和协调的。化学通信是蚂蚁采取的基本信息交流方式之一,在蚂蚁的生活习性中起着重要的作用。通过对蚂蚁觅食行为的研究,他们发现,整个蚁群就是通过这种信息素进行相互协作,形成正反馈,从而使多个路径上的蚂蚁都逐渐聚集到最短的那条路径上。这样,M.Dorigo等人于1991年首先提出了蚁群算法。其主要特点就是:通过正反馈、分布式协作来寻找最优路径。这是一种基于种群寻优的启发式搜索算法。它充分利用了生物蚁群能通过个体间简单的信息传递,搜索从蚁巢至食物间最短路径的集体寻优特征,以及该过程与旅行商问题求解之间的相似性。得到了具有NP难度的旅行商问题的最优解答。同时,该算法还被用于求解Job-Shop调度问题、二次指派问题以及多维背包问题等,显示了其适用于组合优化类问题求解的优越特征。一:蚁群算法的由来二:蚁群算法原理•为了说明蚁群算法的原理,先简要介绍一下蚂蚁搜寻食物的具体过程。在蚁群寻找食物时,它们总能找到一条从食物到巢穴之间的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素。当它们碰到一个还没有走过的路口时.就随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激索浓度越低.当后来的蚂蚁再次碰到这个路口的时候.选择激素浓度较高路径概率就会相对较大。这样形成一个正反馈。最优路径上的激索浓度越来越大.而其它的路径上激素浓度却会随着时间的流逝而消减。最终整个蚁群会找出最优路径。蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位行走一步,本图为经过9个时间单位时的情形:走ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好走到C点,为一半路程。三:简化的蚂蚁寻食过程简化的蚂蚁寻食过程本图为从开始算起,经过18个时间单位时的情形:走ABD的蚂蚁到达终点后得到食物又返回了起点A,而走ACD的蚂蚁刚好走到D点。简化的蚂蚁寻食过程假设蚂蚁每经过一处所留下的信息素为一个单位,则经过36个时间单位后,所有开始一起出发的蚂蚁都经过不同路径从D点取得了食物,此时ABD的路线往返了2趟,每一处的信息素为4个单位,而ACD的路线往返了一趟,每一处的信息素为2个单位,其比值为2:1。寻找食物的过程继续进行,则按信息素的指导,蚁群在ABD路线上增派一只蚂蚁(共2只),而ACD路线上仍然为一只蚂蚁。再经过36个时间单位后,两条线路上的信息素单位积累为12和4,比值为3:1。若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而ACD路线上仍然为一只蚂蚁。再经过36个时间单位后,两条线路上的信息素单位积累为24和6,比值为4:1。若继续进行,则按信息素的指导,最终所有的蚂蚁会放弃ACD路线,而都选择ABD路线。这也就是正反馈效应。四:自然蚁群与人工蚁群算法基于以上蚁群寻找食物时的最优路径选择问题,可以构造人工蚁群,来解决最优化问题,如TSP问题。人工蚁群中把具有简单功能的工作单元看作蚂蚁。二者的相似之处在于都是优先选择信息素浓度大的路径。较短路径的信息素浓度高,所以能够最终被所有蚂蚁选择,也就是最终的优化结果。两者的区别在于人工蚁群有一定的记忆能力,能够记忆已经访问过的节点。同时,人工蚁群再选择下一条路径的时候是按一定算法规律有意识地寻找最短路径,而不是盲目的。例如在TSP问题中,可以预先知道当前城市到下一个目的地的距离。五:蚁群算法与TSP问题TSP问题的人工蚁群算法中,假设m只蚂蚁在图的相邻节点间移动,从而协作异步地得到问题的解。每只蚂蚁的一步转移概率由图中的每条边上的两类参数决定:1信息素值也称信息素痕迹。2可见度,即先验值。信息素的更新方式有2种,一是挥发,也就是所有路径上的信息素以一定的比率进行减少,模拟自然蚁群的信息素随时间挥发的过程;二是增强,给评价值“好”(有蚂蚁走过)的边增加信息素。蚁群算法与TSP问题蚂蚁向下一个目标的运动是通过一个随机原则来实现的,也就是运用当前所在节点存储的信息,计算出下一步可达节点的概率,并按此概率实现一步移动,逐此往复,越来越接近最优解。蚂蚁在寻找过程中,或者找到一个解后,会评估该解或解的一部分的优化程度,并把评价信息保存在相关连接的信息素中。蚁群算法有两个阶段:适应阶段和协作阶段.在适应阶段各候选解根据积累的信息不断调整自身结构;在协作阶段,候选解之间通过信息交流,以期产生性能更好的解。蚁群算法与TSP问题蚁群算法与TSP问题蚁群算法与TSP问题表示第k只蚂蚁在本次循环中留在路径(i,j)上的信息素的浓度,表示本次循环所有蚂蚁在路径ij上所释放的信息素浓度之和。DorigoM曾给出3种不同模型,分别称之为antcyclesystem(蚁周),antquantitysystem(蚁量),antdensitysystem(蚁密),它们的差别在于的计算表达式不同。kijijij在antcyclesystem模型中otherwise0ntandbetweenttouritsinj)(i,edgeusesantkththeif/kijkLQLK本次蚁K走过的长度;Q表示蚁具有信息数总量。在antquantitysystem模型中otherwise0ntandbetweenttouritsinj)(i,edgeusesantkththeif/kijijdQ在antdensitysystem模型中otherwise0ntandbetweenttouritsinj)(i,edgeusesantkththeifQkij六:蚁群算法流程误区:利用最大概率确定被选城市。对策误区:参数组合选择小对策蚁群的规模和停止规则一、蚁群大小一般情况下蚁群中蚂蚁的个数不超过TSP图中节点的个数。二、终止条件1给定一个外循环的最大数目,表明已经有足够的蚂蚁工作;2当前最优解连续K次相同而停止,其中K是一个给定的整数,表示算法已经收敛,不再需要继续;3目标值控制规则,给定优化问题(目标最小化)的一个下界和一个误差值,当算法得到的目标值同下界之差小于给定的误差值时,算法终止。四个城市的非对称TSP问题,距离矩阵和城市图示如下:010.511011()1.55011110ijDd2101121121121120112112(0)((0))11211201121121121120ij假设共4只蚂蚁,所有蚂蚁都从城市A出发,挥发因子此时,观察AS的计算过程。矩阵共有12条弧,初始信息素记忆矩阵为:假设蚂蚁的行走路线分别为:当前最优解为W2,这个解是截止到当前的最优解,碰巧是实际最优解1:,(1)4;2:,(2)3.5;3:,(3)8;4:,(4)4.5;WABCDAfWWACDBAfWWADCBAfWWABDCAfW第一只第二只第三只第四只按算法步骤的信息素更新规则,第一次外循环结束后得到更新矩阵这是第一次外循环结束的状态。012416124160124124(1)((1))124112016124161240ij重复外循环,由于上一次得到的W2已经是全局最优解,因此按算法步骤的信息素更新规则,无论蚂蚁如何行走,都只是对W2路线上的城市信息素进行增强,其他的城市信息素进行挥发。得到更新矩阵这是第二次外循环结束的状态。01485241485240148148(2)((2))14814805241485241480ij2.2.5初始的蚁群优化算法—基于图的蚁群系统(GBAS)重复外循环,由于W2全局最优解,AS只记录第一个最优解,因此一但得到了全局最优解,信息素的更新将不再依赖于以群的行走路线,而只是不断增强最优路线的信息素,同时进行挥发。第三次外循环后得到的信息素矩阵为:0196114819611480196196(3)((3))1961960114819611481960ij七.应用蚁群算法的应用进展以蚁群算法为代表的群智能已成为当今分布式人工智能研究的一个热点,许多源于蜂群和蚁群模型设计的算法己越来越多地被应用于企业的运转模式的研究。美国五角大楼正在资助关于群智能系统的研究工作-群体战略(SwarmStrategy),它的一个实战用途是通过运用成群的空中无人驾驶飞行器和地面车辆来转移敌人的注意力,让自己的军队在敌人后方不被察觉地安全进行。英国电信公司和美国世界通信公司以电子蚂蚁为基础,对新的电信网络管理方法进行了试验。群智能还被应用于工厂生产计划的制定和运输部门的后勤管理。美国太平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的运输管理软件,结果每年至少节约了1000万美元的费用开支。英国联合利华公司己率先利用群智能技术改善其一家牙膏厂的运转情况。美国通用汽车公司、法国液气公司、荷兰公路交通部和美国一些移民事务机构也都采用这种技术来改善其运转的机能。鉴于群智能广阔的应用前景,美国和欧盟均于近几年开始出资资助基于群智能模拟的相关研究项目,并在一些院校开设群体智能的相关课程。国内,国家自然科学基金”十五”期间学科交叉类优先资助领域中的认知科学及其信息处理的研究内容中也明确列出了群智能领域的进化、自适应与现场认知主题。•蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,如,图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。蚁群算法在若干领域己获得成功的应用,其中最成功的是在组合优化问题中的应用。•在网络路由处理中,网络的流量分布不断变化,网络链路或结点也会随机地失效或重新加入。蚁群的自身催化与正向反馈机制正好符合了这类问题的求解特点,因而,蚁群算法在网络领域得到一定应用。蚁群觅食行为所呈现出的并行与分布特性使得算法特别适合于并行化处理。因而,实现算法的并行化执行对于大量复杂的实际应用问题的求解来说是极具潜力的。•在某群体中若存在众多无智能的个体,它们通过相互之间的简单合作所表现出来的智能行为即称为集群智能(SwarmIntelligence)。互联网上的交流,不过是更多的神经元连接(人脑)通过互联网相互作用的结果,光缆和路由器不过是轴突和突触的延伸。从自组织现象的角度上看,人脑的智能和蚁群也没有本质上的区别,单个神经元没有智能可言,单个蚂蚁也没有,但是通过连接形成的体系,是一个智能体。谢谢