《解直角三角形应用举例》课件03

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

28.2解直角三角形应用举例杭六中杨瑞枝在直角三角形中,除直角外,由已知两元素求其余未知元素的过程叫解直角三角形.1.解直角三角形(1)三边之间的关系:a2+b2=c2(勾股定理);2.解直角三角形的依据(边角之间的关系)(2)两锐角之间的关系:∠A+∠B=90º;(3)边角之间的关系:ACBabctanA=absinA=accosA=bc(必有一边)温故而知新ABC┌如图,Rt△ABC中,∠C=90°,(1)若∠A=30°,BC=3,则AC=(2)若∠B=45°,AC=3,则AB=(3)若∠A=α°,AC=3,则BC=(4)若∠A=α°,BC=m,则AC=333tantanmBAC231、如图,为了测量电线杆的高度AB,在离电线杆22米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=30°,求电线杆AB的高.图19.4.41.2022=300铅垂线水平线视线视线仰角俯角在进行观察或测量时,仰角和俯角从上往下看,视线与水平线的夹角叫做俯角.从下向上看,视线与水平线的夹角叫做仰角;2:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高?(结果取整数)α=30°β=60°120ABCD3:2012年6月18日“神舟”9号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接。“神舟”9号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行.如图,当组合体运行到地球表面上P点的正上方时,从组合体中能直接看到的地球表面最远的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果取整数)分析:从组合体上能最远直接看到的地球上的点,应是视线与地球相切时的切点.如图,⊙O表示地球,点F是组合体的位置,FQ是⊙O的切线,切点Q是从组合体观测地球时的最远点.的长就是地面上P、Q两点间的距离,为计算的长需先求出∠POQ(即a)PQPQ解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.95.034364006400cosOFOQa18a∴PQ的长为205164014.3640018018当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km·OQFPα利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.1.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角为60°,观察底部B的仰角为45°,求旗杆的高度。BACD2、在山脚C处测得山顶A的仰角为45°。问题如下:沿着水平地面向前300米到达D点,在D点测得山顶A的仰角为600,求山高AB。DABC图13.如图1,已知楼房AB高为50m,铁塔塔基距楼房地基间的水平距离BD为100m,塔高CD为m,则下面结论中正确的是()A.由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°C.由楼顶望塔顶仰角为30°D.由楼顶望塔基俯角为30°1003(50)3C4.如图4,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为(根号保留).你们辛苦了小结:利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.3.如图3,从地面上的C,D两点测得树顶A仰角分别是45°和30°,已知CD=200m,点C在BD上,则树高AB等于(根号保留).100(31)m图3图4222cm1.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°ABCED∴∠BED=∠ABD-∠D=90°答:开挖点E离点D332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角新人教版九年级数学(下册)第二十八章§28.2解直角三角形(3)3、在山顶上处D有一铁塔,在塔顶B处测得地面上一点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已知塔高BD=30米,求山高CD。ABCαDβ铅垂线水平线视线视线仰角俯角在进行观察或测量时,仰角和俯角从上往下看,视线与水平线的夹角叫做俯角.从下向上看,视线与水平线的夹角叫做仰角;指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的北偏东30°点B在点O的南偏西45°(西南方向)30°45°BOA东西北南方位角利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.例1.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)60°30°PBCA例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?BADF60°1230°BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F,∠AFD=90°由题意图示可知∠DAF=30°设DF=x,AD=2x则在Rt△ADF中,根据勾股定理222223AFADDFxxx在Rt△ABF中,tanAFABFBF3tan3012xx解得x=666310.4AFx10.48没有触礁危险30°60°1.如图所示,轮船以32海里每小时的速度向正北方向航行,在A处看灯塔Q在轮船的北偏东30°处,半小时航行到B处,发现此时灯塔Q与轮船的距离最短,求灯塔Q到B处的距离(画出图像后再计算)ABQ30°相信你能行A2.如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时至B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A.海里B..海里C.7海里D.14海里27214D气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的B点生成,测得.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60°方向继续移动.以O为原点建立如图12所示的直角坐标系.1006kmOBx/kmy/km北东AOBC图12(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为A点)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?x/kmy/km北东AOBC图12解:(1)(10031003)B,(10032001003)C,(2)过点C作于点D,如图2,则CDOA1003CD在中RtACD△30ACD1003CD3cos302CDCA200CA200206305611台风从生成到最初侵袭该城要经过11小时.60x/kmy/kmAOBC图2D新人教版九年级数学(下册)第二十八章§28.2解直角三角形(4)修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i,即i=.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作a,有i==tana.显然,坡度越大,坡角a就越大,坡面就越陡.lhlh例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝顶宽AD和斜坡AB的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.5解:(1)在Rt△AFB中,∠AFB=90°tan11.5AFiBF:33.7在Rt△CDE中,∠CED=90°tan1:3DEiCE18.4图19.4.619.4.6如图一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°.求路基下底的宽.1.认清图形中的有关线段;2.分析辅助线的作法;3.坡角在解题中的作用;4.探索解题过程.32tan2.4AEAEDEi)(72.632tan2.4米AE作DE⊥AB,CF⊥AB,垂足分别为E、F.由题意可知DE=CF=4.2(米),CD=EF=12.51(米).在Rt△ADE中,因为所以)(90.728tan2.4米BF在Rt△BCF中,同理可得因此AB=AE+EF+BF≈6.72+12.51+7.90≈27.13(米).答:路基下底的宽约为27.13米.图19.4.64如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m,∠ADC=1350.(1)求坡角∠ABC的大小;(2)如果坝长100m,那么修建这个大坝共需多少土石方(结果精确到0.01m3).咋办先构造直角三角形!ABCD2.01:2.51:2BCADEF如图,沿水库拦水坝的背水坡将坝面加宽两米,坡度由原来的1:2改成1:2.5,已知原背水坡长BD=13.4米,求:(1)原背水坡的坡角和加宽后的背水坡的坡角;(2)加宽后水坝的横截面面积增加了多少?(精确到0.01)1.在解直角三角形及应用时经常接触到的一些概念(方位角;坡度、坡角等)2.实际问题向数学模型的转化(解直角三角形)利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.

1 / 39
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功