高数大一上期末复习资料经管类

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1期末复习题极限有关的题型1.求极限(1)])1(1431321211[limnnn(2))2121211(lim12nn(3))1()1)(1)(1(lim242nxxxxn(1x)(4)232lim222xxxxx(5)hxhxh220)(lim(6)xxx11lim0(7)321lim1xxx(8))0(limaaxaxax(9))e1)(1sin2(limxxx(10)23232sin1lim271xxxxxx(11)11lim1mnxxx(12)1lim21xnxxxnx(13)xxx1sin)1(lim(14)nnnx2tan2lim(15)xxxarctanlim0(16)nnnn)111(lim2(17)7lim()7xxxx(18)123lim()21xxxx(19)1/0lim(cos)xxx(20)nnnn312lim(21)若8)2(limxxaxax,求常数a;(22)2212limsin31xxxx(23)极限)1ln()1(1sin1lim0xexxxx(24)当0x时,123(1)1ax与cos1x是等价无穷小,则常数a.(25)设0x时,xxeesin与nx同阶无穷小,则n为。(26)mnxxx)(sin)sin(lim0(27)xxxx30sinsintanlim(28))cos1(cos11lim30xxexx(29))tan1ln()1()1arctan21)((sinlim2302xexxxxx(30)xxxxxx20sin1sin1tan1lim(31)若极限0lim()xfx存在,且201()tan1lim31xxfxxe,求0lim()xfx。(32)已知0)](1[lim2baxxxx,试求常数a、b的值.补充竞赛题(第三部分有关极限)23.xxxxxxsin114lim22;解:2222111114141limlim1sinsin11xxxxxxxxxIxxxxx.4.1223lim422xxxxx解:2441311lim2122xxxIxx5.xxxxxeeee32lim22解:311lim232xxxeIe15.nnnnncba)3(lim)0,0,0(cba解:111lim33lim(1)3nnnnabcnnnnnnabcIe1[lim(1)lim(1)lim(1)]33nnnnnnnanbnceabc.17.xxx2tan1)2(lim________.解:原式=Ltan2111sin122lim1(1),lim(1)limcoscos22xxxxxxxxxx.原式=2e.18.xxx)(coslim0.解:001(cos1)lim(cos1)lim2cos120lim(1cos1)xxxxxxxxxxIxeee.19.21coslimnnn_______.解:原式=211cos1limnnn,2121lim)11(coslim222nnnnnn,结果为21e.320.nnnnnnnlnlnlnlim_______.解:原式=lnlnlnlim1,lnnnnnnnnnn2ln2limlim2lnlnln1nnnnnnnnn,原式=2e.21.21sinlimnnnn________.原式=2123011sin1lim1sin1,limsin1lim6tnnnntttnnnnnt,所以为61e.23.求11112limnxxxxnxaaan.解:原式=11112lim1nxxxxnxaaann,令1,tx由重要极限得1212111111limlim12lim1ttttttnnxxnxaaaaaanxxxnttxaaaneen12ln12naaaneaaa.27.)sin1ln(lim3sin0xeexxx.解:sinsinsin33000(1)sin1=limlimlim6xxxxxxxeexxIexx.34.求极限)(lim11cos2eexxx.解:原式=11cos21222111111lim(1)lim1coslim22xxxxxeexxexexe.35.求极限)33(lim1112xxxx.解:111111111221111231lim(33)lim3(31)lim3limln31xxxxxxxxxxxxxxx.436.求极限limtansin()22xxx.解:sin()2limtansin()limsinlim222sin()22xxxxxxxx.37.求极限])1[(limennnnn.解:原式11ln1ln111ln111lim[]limlimlim[ln(1)1]112nnnnnnnnnneeeeneeeennnnn.函数的连续性与间断点1.填空题(1)函数21)(22xxxxf的可去间断点为x.(2))1(2cos2xxxy的间断点是,间断点类型:(3)xxytan的间断点是,间断点类型:2.找出函数xxxf1211)(的间断点,并且说明它属于哪一类间断点.3.设函数)1)((e)(xaxbxfx,求ba,的值,使得0x为)(xf的无穷间断点,1x为)(xf的可去间断点.4.判断01)1ln(0,)(11xxxexfx的间断点,并说明其类型。连续函数的运算与初等函数的连续性1.填空题(1)函数21sin0()0xxfxxaxx要使()fx在(,)连续,a;(2)设0,cos0,sin)(xxaxxxxf在0x处连续,则常数a;5(3)设1,1,11sinxeaxxxxfx在1x处连续,则常数a;(4)设221sin0()sin0xxxfxxbxx,要使)(xf在0x点连续,则b;(5)函数0,2sincos20,)(xxxxaexfx在(-1,1)上连续,则a;2.函数1,41,313)(xxxxbaxxf在点1x连续,求常数ba,。闭区间上连续函数的性质1.证明方程2exx在区间)2,0(内至少有一个实根.2.证明方程)0,0(sinbabxax至少有一个不超过ba的正根.3.若函数)(xf在闭区间]2,0[a上连续,且)2()0(aff,证明在闭区间],0[a上至少有一点使)()(aff.4.若)(xf在闭区间],[ba上连续,且bdca,对任何正数nm,.证明在闭区间],[ba上内至少有一点使)()()()(fnmdnfcmf.5.若函数)(xf在闭区间],[ba上连续,且bxxxan21,证明在闭区间],[1nxx上至少有一点,使得nxfxfxffn)()()()(21.第二章导数与微分第一节导数的概念1.填空题(1)()fx在xa处可导,且()lim2xafxxa,则()fa,()fa;(2)设0)('xf存在,且当0x时,)()(00xfxxf与xA是等价无穷小,则常数A;(3)若)(0xf存在,则hhxfhxfh)()3(lim000;6(4)已知)(0xf存在,则))1()1((lim00nxfnxfnn=;(5)设0'()fx存在,则000()(2)limarcsinhfxhfxhh=;(6)设函数)(xf可导且12)1()1(lim0xxffx,则曲线)(xfy在点))1(,1(f处的切线斜率是;(7)已知函数)(xf在0x的某领域处有定义,在0x处可导,0)0(f,则极限)2012sin(10)]()2012(1[limxxxfxf;(8)设2)65()(22xxxxxf,则)(xf在点x处不可导。2.设11)(2xbaxxxxf在1x可导,求常数,ab的值.3.讨论10110)1ln()(2xxxxxxf在0x的可导性。第二节函数的求导法则1.填空题(1)设)2)(()2)(1()(nnxxxxxf,则)0(f______(2)设)(2)(xfxeefy,其中f可导,则dxdy(3)已知函数)(xf在3x处可导且1)3(f,则曲线)12(xfy在其上一点)3,1(处的切线方程为(4)已知1)1(xxxy,则y2.计算下列各题的导数(1)()lntancoslntan2xfxxx;(2))arcsin(cos)(xxf;(3)xxxf1)(;3.设()gx连续,且2()()()fxxagx,求()fa第三节高阶导数1.求xxxflncos)(2的二阶导数.2.设)](sin[2xfy,其中f具有二阶导数,求22dxyd;3.已知)1ln(2xxy,求)5(y。4.设32xyxe,求(10)y7第四节隐函数及由参数方程所确定的函数的导数相关变化率1.填空题(1)曲线26exyeyx在0x处的切线方程为;(2)曲线1ln2yyx在点(1,1)处的切线方程为,法线方程为;(3)曲线tteyex2在0t对应点处的切线方程是;2.设()yyx由方程03xyeyx所确定,求(0)y3.设)(xyy由方程eexyy所确定,求)0(y;4.求曲线,sin,cos33taytax在4t相应点处的切线方程.5.设)(xyy由)1()(3tefytfx所确定,其中)(xf有二阶导,求0tdxdy,22dxyd;6.设参数方程2ln(1)arctanxtytt确定函数)(xyy,求22dydx第五节函数的微分1.填空题(1)已知xysinln,则dy,dy;(2)函数arcsinsin(tan)yxxx,则dy;(3)2sin(2)xxde;(4)若函数)(xf可微,则极限0limxydyx=;(5)设函数()yyx由方程cos()0xyexy确定,则0xdy。2.设xxxeexeyarctan)1ln(212,求dy.3.已知22sec211lncos+arctan211xxxxyex求dy。第三章微分中值定理与导数的应用第一节微分中值定理1.证明(1)设()fx在[0,]上连续,在(0,)可导,证明:(0,),使得'()sin()cos0ff。8(2)设)(xf在],[ba连续

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功