八年级数学上期末压轴题练习1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1xOEDBAyxOCBAy图3EDCBA图2EDCBA图1EDCBA2017八年级数学上期末综合题练习11、如图,已知:点D是△ABC的边BC上一动点,且AB=AC,DA=DE,∠BAC=∠ADE=α.⑴如图1,当α=60°时,∠BCE=;⑶如图3,当α=120°时,则∠BCE=;(图1)(图2)(图3)⑵如图2,当α=90°时,试判断∠BCE的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;2、在平面直角坐标系xoy中,直线6yx与x轴交于A,与y轴交于B,BC⊥AB交x轴于C.①求△ABC的面积.②D为OA延长线上一动点,以BD为直角边做等腰直角三角形BDE,连结EA.求直线EA的解析式.2EAFOxy③点E是y轴正半轴上一点,且∠OAE=30°,OF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,是判断是否存在这样的点M、N,使得OM+NM的值最小,若存在,请写出其最小值,并加以说明.3.如图,直线1l与x轴、y轴分别交于A、B两点,直线2l与直线1l关于x轴对称,已知直线1l的解析式为3yx,(1)求直线2l的解析式;(2)过A点在△ABC的外部作一条直线3l,过点B作BE⊥3l于E,过点C作CF⊥3l于F分别,请画出图形并求证:BE+CF=EF(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。CBAl2l10xyCBA0xyQMPCBA0xy34.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足2220aabb.⑴判断△AOB的形状.⑵如图②,正比例函数(0)ykxk的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.⑶如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连结PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.①OQNMyxBA②OPyxEDBA③45、如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.6.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.5EDCBAFEDCBAF八年级数学上期末综合题练习1答案:1、⑴如图1,当α=60°时,∠BCE=120°;⑵如图2,证明:如图,过D作DF⊥BC,交CA或延长线于F.易证:△DCE≌△DAF,得∠BCE=∠DFA=45°或135°.⑶如图3,仿照(2)在AC上取点F,使DC=DF;当α=120°时,则∠BCE=30°或150°;2、①求△ABC的面积=36;②解:过E作EF⊥x轴于F,延长EA交y轴于H;易证:△OBD≌△FDE;得:DF=BO=AO,EF=OD;∴AF=EF,∴∠EAF=45°,∴△AOH为等腰直角三角形.∴OA=OH,∴H(0,-6)∴直线EA的解析式为:6yx;③解:在线段OA上任取一点N,易知使OM+NM的值最小的是点O到点N关于直线AF对称点N’之间线段的长.当点N运动时,ON’最短为点O到直线AE的距离,即点O到直线AE的垂线段的长.∠OAE=30°,OA=6,所以OM+NM的值为3.3.(1)A(-3,0)B(0,3)C(0,-3)3yx(2)画图;答:BECFEF;易证△BEA≌△AFC;∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF(3)①对,OM=3;过Q点作QH⊥y轴于H,则△QCH≌△PBO;∴QH=PO=OB=CH∴△QHM≌△POM;∴HM=OM;∴OM=BC-(OB+CM)=BC-(CH+CM)=BC-OM;∴OM=12BC=34.解:⑴等腰直角三角形∵2220aabb;∴2()0ab∴ab∵∠AOB=90°∴△AOB为等腰直角三角形⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°∴∠MAO=∠MOB;∵AM⊥OQ,BN⊥OQ∴∠AMO=∠BNO=90°在△MAO和△BON中MAOMOBAMOBNOOAOB∴△MAO≌△NOB;∴OM=BN,AM=ON,OM=BN;∴MN=ON-OM=AM-BN=5⑶PO=PD且PO⊥PD;如图,延长DP到点C,使DP=PC,连结OP、OD、OC、BC6在△DEP和△CBPDPPCDPECPBPEPB∴△DEP≌△CBP∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD和△OBCDACBDAOCBOOAOB∴△OAD≌△OBC∴OD=OC,∠AOD=∠COB;∴△DOC为等腰直角三角形;∴PO=PD,且PO⊥PD.5、【解答】(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,在矩形ABCD中,AD∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B'EF,∴B′F=B′E,∴B′E=BF;(2)答:a,b,c三者关系不唯一,有两种可能情况:(ⅰ)a,b,c三者存在的关系是a2+b2=c2.证明:连接BE,由(1)知B′E=BF=c,∵B′E=BE,∴四边形BEB′F是平行四边形,∴BE=c.在△ABE中,∠A=90°,∴AE2+AB2=BE2,∵AE=a,AB=b,∴a2+b2=c2;或(ⅱ)a,b,c三者存在的关系是a+b>c.证明:连接BE,则BE=B′E.由(1)知B′E=BF=c,∴BE=c,在△ABE中,AE+AB>BE,∴a+b>c.6、答案;(1)解:正方形、长方形、直角梯形.(任选两个均可)(2)解:答案如图所示.M(3,4)或M′(4,3).(3)证明:连接EC,∵△ABC≌△DBE,∴AC=DE,BC=BE,∵∠CBE=60°,∴EC=BC=BE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功